Department of Medical Engineering and Biotechnology, University of Applied Sciences Jena, Germany.
Med Eng Phys. 2013 Mar;35(3):376-82. doi: 10.1016/j.medengphy.2012.06.002. Epub 2012 Jul 2.
Today atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice accounting for approximately one third of hospitalizations and accompanied with a 5 fold increased risk for ischemic stroke and a 1.5 fold increased mortality risk. The role of the cardiac regulation system in AF recurrence after electrical cardioversion (CV) is still unclear. The aim of this study was to investigate the autonomic regulation by analyzing the interaction between heart rate and blood pressure using novel methods of nonlinear interaction dynamics, namely joint symbolic dynamics (JSD) and segmented Poincaré plot analysis (SPPA). For the first time, we applied SPPA to analyze the interaction between two time series. Introducing a parameter set of two indices, one derived from JSD and one from SPPA, the linear discriminant function analysis revealed an overall accuracy of 89% (sensitivity 91.7%, specificity 86.7%) for the classification between patients with stable sinus rhythm (group SR, n = 15) and with AF recurrence (group REZ, n = 12). This study proves that the assessment of the autonomic regulation by analyzing the coupling of heart rate and systolic blood pressure provides a potential tool for the prediction of AF recurrence after CV and could aid in the adjustment of therapeutic options for patients with AF.
目前,心房颤动(AF)是临床实践中最常见的心律失常,约占住院患者的三分之一,其缺血性卒中风险增加 5 倍,死亡率风险增加 1.5 倍。心脏调节系统在电复律(CV)后 AF 复发中的作用尚不清楚。本研究旨在通过分析心率和血压之间的相互作用,应用非线性相互作用动力学的新方法,即联合符号动力学(JSD)和分段庞加莱图分析(SPPA),来研究自主神经调节。我们首次将 SPPA 应用于分析两个时间序列之间的相互作用。通过引入一组两个指数的参数,一个来自 JSD,另一个来自 SPPA,线性判别函数分析显示,稳定窦性节律组(n = 15)和 AF 复发组(n = 12)之间的分类总体准确率为 89%(敏感性 91.7%,特异性 86.7%)。这项研究证明,通过分析心率和收缩压的耦合来评估自主神经调节,为 CV 后 AF 复发的预测提供了一种潜在的工具,并有助于调整 AF 患者的治疗选择。