Suppr超能文献

利用持续性心房颤动患者心房电图的自回归谱分析进行三维主导频率映射。

Three-dimensional dominant frequency mapping using autoregressive spectral analysis of atrial electrograms of patients in persistent atrial fibrillation.

作者信息

Salinet João L, Masca Nicholas, Stafford Peter J, Ng G André, Schlindwein Fernando S

机构信息

Biomedical Engineering, Modelling and Applied Social Sciences Centre, Federal ABC University, Bloco Delta, Sala 335 - Rua Arcturus, 03 - Jardim Antares, São Bernardo do Campo, SP, CEP 09606-070, Brazil.

Department of Engineering, University of Leicester, Leicester, UK.

出版信息

Biomed Eng Online. 2016 Mar 8;15:28. doi: 10.1186/s12938-016-0143-8.

Abstract

BACKGROUND

Areas with high frequency activity within the atrium are thought to be 'drivers' of the rhythm in patients with atrial fibrillation (AF) and ablation of these areas seems to be an effective therapy in eliminating DF gradient and restoring sinus rhythm. Clinical groups have applied the traditional FFT-based approach to generate the three-dimensional dominant frequency (3D DF) maps during electrophysiology (EP) procedures but literature is restricted on using alternative spectral estimation techniques that can have a better frequency resolution that FFT-based spectral estimation.

METHODS

Autoregressive (AR) model-based spectral estimation techniques, with emphasis on selection of appropriate sampling rate and AR model order, were implemented to generate high-density 3D DF maps of atrial electrograms (AEGs) in persistent atrial fibrillation (persAF). For each patient, 2048 simultaneous AEGs were recorded for 20.478 s-long segments in the left atrium (LA) and exported for analysis, together with their anatomical locations. After the DFs were identified using AR-based spectral estimation, they were colour coded to produce sequential 3D DF maps. These maps were systematically compared with maps found using the Fourier-based approach.

RESULTS

3D DF maps can be obtained using AR-based spectral estimation after AEGs downsampling (DS) and the resulting maps are very similar to those obtained using FFT-based spectral estimation (mean 90.23 %). There were no significant differences between AR techniques (p = 0.62). The processing time for AR-based approach was considerably shorter (from 5.44 to 5.05 s) when lower sampling frequencies and model order values were used. Higher levels of DS presented higher rates of DF agreement (sampling frequency of 37.5 Hz).

CONCLUSION

We have demonstrated the feasibility of using AR spectral estimation methods for producing 3D DF maps and characterised their differences to the maps produced using the FFT technique, offering an alternative approach for 3D DF computation in human persAF studies.

摘要

背景

心房内高频活动区域被认为是心房颤动(AF)患者心律的“驱动因素”,消融这些区域似乎是消除离散度(DF)梯度和恢复窦性心律的有效疗法。临床团队在电生理(EP)手术过程中应用基于传统快速傅里叶变换(FFT)的方法来生成三维主导频率(3D DF)图,但关于使用具有比基于FFT的频谱估计更好频率分辨率的替代频谱估计技术的文献有限。

方法

实施基于自回归(AR)模型的频谱估计技术,重点是选择合适的采样率和AR模型阶数,以生成持续性心房颤动(persAF)患者心房电图(AEG)的高密度3D DF图。对于每位患者,在左心房(LA)记录2048个同步AEG,记录时长为20.478秒的片段,并连同其解剖位置一起导出进行分析。使用基于AR的频谱估计确定DF后,对其进行颜色编码以生成连续的3D DF图。将这些图与使用基于傅里叶的方法获得的图进行系统比较。

结果

在AEG下采样(DS)后,使用基于AR的频谱估计可以获得3D DF图,所得图与使用基于FFT的频谱估计获得的图非常相似(平均90.23%)。AR技术之间无显著差异(p = 0.62)。当使用较低的采样频率和模型阶数值时,基于AR的方法的处理时间明显更短(从5.44秒至5.05秒)。更高水平的DS呈现出更高的DF一致性率(采样频率为37.5 Hz)。

结论

我们已经证明了使用AR频谱估计方法生成3D DF图的可行性,并描述了它们与使用FFT技术生成的图的差异,为人类persAF研究中的3D DF计算提供了一种替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71d7/4782578/b5010f797a48/12938_2016_143_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验