Vorobiev Yuri V, Mera Bruno, Vieira Vítor R, Horley Paul P, González-Hernández Jesús
CINVESTAV-Querétaro, Libramiento Norponiente 2000, Fracc, Real de Juriquilla, Querétaro, QRO, 76230, Mexico.
Nanoscale Res Lett. 2012 Jul 5;7(1):371. doi: 10.1186/1556-276X-7-371.
Cylindrical nanostructures, namely, nanowires and pores, with rectangular and circular cross section are examined using mirror boundary conditions to solve the Schrödinger equation, within the effective mass approximation. The boundary conditions are stated as magnitude equivalence of electron's Ψ function in an arbitrary point inside a three-dimensional quantum well and image point formed by mirror reflection in the walls defining the nanostructure. Thus, two types of boundary conditions - even and odd ones - can be applied, when Ψ functions in a point, and its image, are equated with the same and the opposite signs, correspondingly. In the former case, the Ψ function is non-zero at the boundary, which is the case of a weak confinement. In the latter case, the Ψ function vanishes at the boundary, corresponding to strong quantum confinement. The analytical expressions for energy spectra of electron confined within a nanostructure obtained in the paper show a reasonable agreement with the experimental data without using any fitting parameters.
在有效质量近似下,使用镜像边界条件求解薛定谔方程,研究了具有矩形和圆形横截面的圆柱形纳米结构,即纳米线和纳米孔。边界条件表述为三维量子阱内任意一点处电子的Ψ函数与由定义纳米结构的壁中的镜像反射形成的像点处的Ψ函数的幅值相等。因此,当一点处的Ψ函数与其像点处的Ψ函数分别取相同和相反符号时,可以应用两种类型的边界条件——偶数型和奇数型。在前一种情况下,Ψ函数在边界处不为零,这是弱限制的情况。在后一种情况下,Ψ函数在边界处消失,对应于强量子限制。本文中获得的限制在纳米结构内的电子的能谱解析表达式,在不使用任何拟合参数的情况下与实验数据显示出合理的一致性。