Suppr超能文献

模拟假体视觉的极低分辨率图像中的面部识别。

Facial identification in very low-resolution images simulating prosthetic vision.

机构信息

Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, Korea.

出版信息

J Neural Eng. 2012 Aug;9(4):046012. doi: 10.1088/1741-2560/9/4/046012. Epub 2012 Jul 6.

Abstract

Familiar facial identification is important to blind or visually impaired patients and can be achieved using a retinal prosthesis. Nevertheless, there are limitations in delivering the facial images with a resolution sufficient to distinguish facial features, such as eyes and nose, through multichannel electrode arrays used in current visual prostheses. This study verifies the feasibility of familiar facial identification under low-resolution prosthetic vision and proposes an edge-enhancement method to deliver more visual information that is of higher quality. We first generated a contrast-enhanced image and an edge image by applying the Sobel edge detector and blocked each of them by averaging. Then, we subtracted the blocked edge image from the blocked contrast-enhanced image and produced a pixelized image imitating an array of phosphenes. Before subtraction, every gray value of the edge images was weighted as 50% (mode 2), 75% (mode 3) and 100% (mode 4). In mode 1, the facial image was blocked and pixelized with no further processing. The most successful identification was achieved with mode 3 at every resolution in terms of identification index, which covers both accuracy and correct response time. We also found that the subjects recognized a distinctive face especially more accurately and faster than the other given facial images even under low-resolution prosthetic vision. Every subject could identify familiar faces even in very low-resolution images. And the proposed edge-enhancement method seemed to contribute to intermediate-stage visual prostheses.

摘要

熟悉的面部识别对于盲人和视力障碍患者很重要,可以通过视网膜假体来实现。然而,目前使用的多通道电极阵列式视觉假体提供的面部图像分辨率有限,不足以区分面部特征,如眼睛和鼻子。本研究验证了低分辨率假体视觉下熟悉的面部识别的可行性,并提出了一种边缘增强方法,以提供更高质量的更多视觉信息。我们首先通过应用 Sobel 边缘检测算子生成对比度增强图像和边缘图像,并对其进行平均分割。然后,我们从对比度增强图像中减去分割后的边缘图像,并生成一个像素化的图像,模仿光幻视的排列。在减法运算之前,对边缘图像的每个灰度值进行加权,权重分别为 50%(模式 2)、75%(模式 3)和 100%(模式 4)。在模式 1 中,对面部图像进行分割和像素化处理,不进行其他处理。在每个分辨率下,识别指数最高的是模式 3,识别指数涵盖了准确性和正确响应时间两个方面。我们还发现,即使在低分辨率假体视觉下,被试也能特别准确和快速地识别出独特的面孔。每个被试都可以识别出熟悉的面孔,即使在非常低分辨率的图像中也是如此。而且,所提出的边缘增强方法似乎对中期视觉假体有帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验