Research School of Psychology, and ARC Centre of Excellence in Cognition and its Disorders, The Australian National University, Canberra, Australian Capital Territory, Australia.
Research School of Psychology, The Australian National University, Canberra, Australian Capital Territory, Australia.
PLoS One. 2018 Oct 4;13(10):e0204361. doi: 10.1371/journal.pone.0204361. eCollection 2018.
Previous behavioural studies demonstrate that face caricaturing can provide an effective image enhancement method for improving poor face identity perception in low vision simulations (e.g., age-related macular degeneration, bionic eye). To translate caricaturing usefully to patients, assignment of the multiple face landmark points needed to produce the caricatures needs to be fully automatised. Recent development in computer science allows automatic face landmark detection of 68 points in real time and in multiple viewpoints. However, previous demonstrations of the behavioural effectiveness of caricaturing have used higher-precision caricatures with 147 landmark points per face, assigned by hand. Here, we test the effectiveness of the auto-assigned 68-point caricatures. We also compare this to the hand-assigned 147-point caricatures.
We assessed human perception of how different in identity pairs of faces appear, when veridical (uncaricatured), caricatured with 68-points, and caricatured with 147-points. Across two experiments, we tested two types of low-vision images: a simulation of blur, as experienced in macular degeneration (testing two blur levels); and a simulation of the phosphenised images seen in prosthetic vision (at three resolutions).
The 68-point caricatures produced significant improvements in identity discrimination relative to veridical. They were approximately 50% as effective as the 147-point caricatures.
Realistic translation to patients (e.g., via real time caricaturing with the enhanced signal sent to smart glasses or visual prosthetic) is approaching feasibility. For maximum effectiveness software needs to be able to assign landmark points tracing out all details of feature and face shape, to produce high-precision caricatures.
之前的行为研究表明,面部漫画化可以为改善低视力模拟中的不良面部身份识别提供一种有效的图像增强方法(例如,年龄相关性黄斑变性,仿生眼)。为了将漫画化有效地应用于患者,需要完全自动化生成漫画所需的多个面部地标点的分配。计算机科学的最新发展允许实时和多视角自动检测 68 个面部地标点。然而,之前演示漫画化行为有效性的研究使用了具有 147 个地标点的更高精度的漫画化,这些地标点是手动分配的。在这里,我们测试自动分配的 68 个地标点的漫画化的有效性。我们还将其与手动分配的 147 个地标点的漫画化进行比较。
我们评估了人类对不同身份的人脸对的感知差异,这些人脸对分别为真实(未漫画化)、68 个地标点的漫画化和 147 个地标点的漫画化。在两个实验中,我们测试了两种低视力图像:一种是模拟黄斑变性时的模糊(测试两个模糊级别);另一种是模拟假体视觉中看到的闪光图像(三种分辨率)。
68 个地标点的漫画化相对于真实图像在身份识别上有显著的提高。它们的效果约为 147 个地标点漫画化的 50%。
向患者进行逼真的转化(例如,通过实时漫画化,并将增强后的信号发送到智能眼镜或视觉假体)正在接近可行性。为了达到最大效果,软件需要能够分配地标点,追踪特征和面部形状的所有细节,以生成高精度的漫画化。