Suppr超能文献

6S RNA——一个旧问题变得“蓝绿交织”。

6S RNA - an old issue became blue-green.

机构信息

Institute for Theoretical Biology, Charité-Universitätsmedizin, Invalidenstraße 43, D-10115 Berlin, Germany.

Molecular Biology of Bacteria, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.

出版信息

Microbiology (Reading). 2012 Oct;158(Pt 10):2480-2491. doi: 10.1099/mic.0.058958-0. Epub 2012 Jul 5.

Abstract

6S RNA from Escherichia coli acts as a versatile transcriptional regulator by binding to the RNA polymerase and changing promoter selectivity. Although homologous 6S RNA structures exist in a wide range of bacteria, including cyanobacteria, our knowledge of 6S RNA function results almost exclusively from studies with E. coli. To test for potential structural and functional conservation, we selected four predicted cyanobacterial 6S RNAs (Synechocystis, Synechococcus, Prochlorococcus and Nostoc), which we compared with their E. coli counterpart. Temperature-gradient gel electrophoresis revealed similar thermodynamic transition profiles for all 6S RNAs, indicating basically similar secondary structures. Subtle differences in melting behaviour of the different RNAs point to minor structural variations possibly linked to differences in optimal growth temperature. Secondary structural analysis of three cyanobacterial 6S RNAs employing limited enzymic hydrolysis and in-line probing supported the predicted high degree of secondary structure conservation. Testing for functional homology we found that all cyanobacterial 6S RNAs were active in binding E. coli RNA polymerase and transcriptional inhibition, and had the ability to act as template for transcription of product RNAs (pRNAs). Deletion of the 6S RNA gene in Synechocystis did not significantly affect cell growth in liquid media but reduced fitness during growth on solid agar. While our study shows that basic 6S RNA functions are conserved in species as distantly related as E. coli and cyanobacteria, we also noted a subtle degree of divergence, which might reflect fundamental differences in transcriptional regulation and lifestyle, thus providing the first evidence for a possible physiological role in cyanobacteria.

摘要

6S RNA 来自大肠杆菌,通过与 RNA 聚合酶结合并改变启动子选择性,充当多功能转录调节剂。虽然在包括蓝藻在内的广泛细菌中存在同源 6S RNA 结构,但我们对 6S RNA 功能的了解几乎完全来自对大肠杆菌的研究。为了测试潜在的结构和功能保守性,我们选择了四个预测的蓝藻 6S RNA(聚球藻、聚球藻、原绿球藻和念珠藻),并将它们与大肠杆菌的 6S RNA 进行了比较。温度梯度凝胶电泳显示所有 6S RNA 的热力学转变曲线相似,表明基本的二级结构相似。不同 RNA 熔化行为的细微差异表明可能存在与最佳生长温度差异相关的细微结构变化。对三种蓝藻 6S RNA 进行的有限酶水解和在线探测的二级结构分析支持了预测的高度二级结构保守性。在功能同源性测试中,我们发现所有蓝藻 6S RNA 都能与大肠杆菌 RNA 聚合酶结合并抑制转录,并且能够作为转录产物 RNA(pRNA)的模板。聚球藻中 6S RNA 基因的缺失并未显著影响液体培养基中的细胞生长,但在固体琼脂上生长时降低了适应性。虽然我们的研究表明,基本的 6S RNA 功能在与大肠杆菌和蓝藻等远缘相关的物种中是保守的,但我们也注意到了细微的差异,这可能反映了转录调控和生活方式的根本差异,从而为蓝藻中可能存在的生理作用提供了第一个证据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验