Capretti Antonio, Walsh Gary F, Minissale Salvatore, Trevino Jacob, Forestiere Carlo, Miano Giovanni, Dal Negro Luca
Department of Electrical and Computer Engineering and Photonics Center, Boston University, Boston, Massachussetts 02215, USA.
Opt Express. 2012 Jul 2;20(14):15797-806. doi: 10.1364/OE.20.015797.
We demonstrate optical Second Harmonic Generation (SHG) in planar arrays of cylindrical Au nanoparticles arranged in periodic and deterministic aperiodic geometries. In order to understand the respective roles of near-field plasmonic coupling and long-range photonic interactions on the SHG signal, we systematically vary the interparticle separation from 60 nm to distances comparable to the incident pump wavelength. Using polarization-resolved measurements under femtosecond pumping, we demonstrate multipolar SHG signal largely tunable by the array geometry. Moreover, we show that the SHG signal intensity is maximized by arranging Au nanoparticles in aperiodic spiral arrays. The possibility to engineer multipolar SHG in planar arrays of metallic nanoparticles paves the way to the development of novel optical elements for nanophotonics, such as nonlinear optical sensors, compact frequency converters, optical mixers, and broadband harmonic generators on a chip.
我们展示了在以周期性和确定性非周期性几何结构排列的圆柱形金纳米颗粒平面阵列中的光学二次谐波产生(SHG)。为了理解近场等离子体耦合和长程光子相互作用对SHG信号的各自作用,我们系统地将粒子间间距从60纳米变化到与入射泵浦波长相当的距离。通过飞秒泵浦下的偏振分辨测量,我们证明了多极SHG信号在很大程度上可由阵列几何结构调节。此外,我们表明通过将金纳米颗粒排列成非周期性螺旋阵列,SHG信号强度可达到最大值。在金属纳米颗粒平面阵列中设计多极SHG的可能性为纳米光子学新型光学元件的开发铺平了道路,例如片上非线性光学传感器、紧凑型频率转换器、光学混频器和宽带谐波发生器。