Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, USA.
Nat Mater. 2012 Jul 8;11(8):700-9. doi: 10.1038/nmat3371.
Ferroelectricity in finite-dimensional systems continues to arouse interest, motivated by predictions of vortex polarization states and the utility of ferroelectric nanomaterials in memory devices, actuators and other applications. Critical to these areas of research are the nanoscale polarization structure and scaling limit of ferroelectric order, which are determined here in individual nanocrystals comprising a single ferroelectric domain. Maps of ferroelectric structural distortions obtained from aberration-corrected transmission electron microscopy, combined with holographic polarization imaging, indicate the persistence of a linearly ordered and monodomain polarization state at nanometre dimensions. Room-temperature polarization switching is demonstrated down to ~5 nm dimensions. Ferroelectric coherence is facilitated in part by control of particle morphology, which along with electrostatic boundary conditions is found to determine the spatial extent of cooperative ferroelectric distortions. This work points the way to multi-Tbit/in(2) memories and provides a glimpse of the structural and electrical manifestations of ferroelectricity down to its ultimate limits.
有限维系统中的铁电性继续引起人们的兴趣,这是受涡旋极化状态的预测以及铁电纳米材料在存储器件、致动器和其他应用中的效用所驱动的。这些研究领域的关键是铁电有序的纳米级极化结构和标度极限,这在包含单个铁电畴的单个纳米晶体中得到了确定。通过对具有像差校正的透射电子显微镜获得的铁电结构畸变图,结合全息极化成像,表明在纳米尺度上仍然存在线性有序和单畴极化状态。证明了室温下的极化开关可低至~5nm 尺寸。铁电相干性部分是通过控制粒子形态来实现的,静电边界条件被发现决定了协同铁电畸变的空间范围。这项工作为多 Tbit/in² 存储器指明了方向,并提供了铁电性在其极限下的结构和电学表现的一瞥。