NaMLab gGmbH , 01187 Dresden , Germany.
Chair of Nanoelectronic Materials , TU Dresden , 01062 Dresden , Germany.
ACS Appl Mater Interfaces. 2018 Jul 18;10(28):23997-24002. doi: 10.1021/acsami.8b08967. Epub 2018 Jul 6.
The electric-field-driven and reversible polarization switching in ferroelectric materials provides a promising approach for nonvolatile information storage. With the advent of ferroelectricity in hafnium oxide, it has become possible to fabricate ultrathin ferroelectric films suitable for nanoscale electronic devices. Among them, ferroelectric field-effect transistors (FeFETs) emerge as attractive memory elements. While the binary switching between the two logic states, accomplished through a single voltage pulse, is mainly being investigated in FeFETs, additional and unusual switching mechanisms remain largely unexplored. In this work, we report the natural property of ferroelectric hafnium oxide, embedded within a nanoscale FeFET, to accumulate electrical excitation, followed by a sudden and complete switching. The accumulation is attributed to the progressive polarization reversal through localized ferroelectric nucleation. The electrical experiments reveal a strong field and time dependence of the phenomenon. These results not only offer novel insights that could prove critical for memory applications but also might inspire to exploit FeFETs for unconventional computing.
铁电材料中电场驱动的可逆极化反转为非易失性信息存储提供了一种很有前途的方法。随着氧化铪中出现铁电性,制造适合纳米电子器件的超薄铁电薄膜成为可能。其中,铁电场效应晶体管(FeFET)作为有吸引力的存储元件出现。虽然通过单个电压脉冲在两个逻辑状态之间进行二进制切换主要在 FeFET 中进行研究,但其他不常见的切换机制在很大程度上仍未得到探索。在这项工作中,我们报告了嵌入在纳米级 FeFET 中的铁电氧化铪的自然特性,即能够积累电激发,随后突然完全切换。这种积累归因于通过局部铁电成核的逐步极化反转。电实验揭示了这种现象对电场和时间的强烈依赖性。这些结果不仅为铁电存储应用提供了新的见解,而且可能会启发人们利用 FeFET 进行非传统计算。