State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China.
ISA Trans. 2012 Nov;51(6):778-85. doi: 10.1016/j.isatra.2012.06.008. Epub 2012 Jul 8.
In this paper, an improved cascade control methodology for superheated processes is developed, in which the primary PID controller is implemented by neural networks trained by minimizing error entropy criterion. The entropy of the tracking error can be estimated recursively by utilizing receding horizon window technique. The measurable disturbances in superheated processes are input to the neuro-PID controller besides the sequences of tracking error in outer loop control system, hence, feedback control is combined with feedforward control in the proposed neuro-PID controller. The convergent condition of the neural networks is analyzed. The implementation procedures of the proposed cascade control approach are summarized. Compared with the neuro-PID controller using minimizing squared error criterion, the proposed neuro-PID controller using minimizing error entropy criterion may decrease fluctuations of the superheated steam temperature. A simulation example shows the advantages of the proposed method.
本文提出了一种改进的过热过程串级控制方法,其中主 PID 控制器通过最小化误差熵准则训练的神经网络来实现。跟踪误差的熵可以通过使用回溯窗口技术递归地估计。除了外环控制系统中的跟踪误差序列之外,可测量的过热过程干扰被输入到神经 PID 控制器中,因此,在提出的神经 PID 控制器中,反馈控制与前馈控制相结合。分析了神经网络的收敛条件。总结了所提出的级联控制方法的实施步骤。与使用最小二乘误差准则的神经 PID 控制器相比,使用最小化误差熵准则的神经 PID 控制器可以降低过热蒸汽温度的波动。仿真示例显示了该方法的优势。