Ministry of Education Key Laboratory of Autonomous System and Network Control (South China University of Technology), Guangzhou 510640, PR China.
ISA Trans. 2013 Jul;52(4):510-6. doi: 10.1016/j.isatra.2013.02.003. Epub 2013 Mar 8.
The traditional integer order proportional-integral-differential (IO-PID) controller is sensitive to the parameter variation or/and external load disturbance of permanent magnet synchronous motor (PMSM). And the fractional order proportional-integral-differential (FO-PID) control scheme based on robustness tuning method is proposed to enhance the robustness. But the robustness focuses on the open-loop gain variation of controlled plant. In this paper, an enhanced robust fractional order proportional-plus-integral (ERFOPI) controller based on neural network is proposed. The control law of the ERFOPI controller is acted on a fractional order implement function (FOIF) of tracking error but not tracking error directly, which, according to theory analysis, can enhance the robust performance of system. Tuning rules and approaches, based on phase margin, crossover frequency specification and robustness rejecting gain variation, are introduced to obtain the parameters of ERFOPI controller. And the neural network algorithm is used to adjust the parameter of FOIF. Simulation and experimental results show that the method proposed in this paper not only achieve favorable tracking performance, but also is robust with regard to external load disturbance and parameter variation.
传统的整数阶比例-积分-微分(IO-PID)控制器对永磁同步电机(PMSM)的参数变化和/或外部负载干扰敏感。为了提高鲁棒性,提出了基于鲁棒性整定方法的分数阶比例-积分-微分(FO-PID)控制方案。但是,鲁棒性侧重于被控对象的开环增益变化。本文提出了一种基于神经网络的增强鲁棒分数阶比例-积分(ERFOPI)控制器。ERFOPI 控制器的控制律作用于跟踪误差的分数阶实现函数(FOIF)上,而不是直接作用于跟踪误差上,根据理论分析,这可以增强系统的鲁棒性能。引入了基于相位裕度、交越频率规范和鲁棒性抑制增益变化的整定规则和方法,以获得 ERFOPI 控制器的参数。并使用神经网络算法调整 FOIF 的参数。仿真和实验结果表明,本文提出的方法不仅实现了良好的跟踪性能,而且对外部负载干扰和参数变化具有鲁棒性。