State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Med Res Rev. 2012 Jul;32(4):815-67. doi: 10.1002/mrr.20228.
Histone methylation represents one of the most critical epigenetic events in DNA function regulation in eukaryotic organisms. Classic molecular biology and genetics tools provide significant knowledge about mechanisms and physiological roles of histone methyltransferases and demethylases in various cellular processes. In addition to this stream line, development and application of chemistry and chemistry-related techniques are increasingly involved in biological study, and offer information otherwise difficult to obtain by standard molecular biology methods. Herein, we review recent achievements and progress in developing and applying chemical and biochemical approaches in the study of histone methylation, including chromatin immunoprecipitation, chemical ligation, mass spectrometry, biochemical methylation and demethylation assays, and inhibitor development. These technological advances allow histone methylation to be studied from genome-wide level to molecular and atomic levels. With ChIP technology, information can be obtained about precise mapping of histone methylation patterns at specific promoters, genes, or other genomic regions. MS is particularly useful in detecting and analyzing methylation marks in histone and nonhistone protein substrates. Chemical approaches that permit site-specific incorporation of methyl groups into histone proteins greatly facilitate the investigation of biological impacts of methylation at individual modification sites. Discovery and design of selective organic inhibitors of histone methyltransferases and demethylases provide chemical probes to interrogate methylation-mediated cellular pathways. Overall, these chemistry-related technological advances have greatly improved our understanding of the biological functions of histone methylation in normal physiology and diseased states, and also are of great potential to translate basic epigenetics research into diagnostic and therapeutic applications in the clinic.
组蛋白甲基化是真核生物中 DNA 功能调控的最关键的表观遗传事件之一。经典的分子生物学和遗传学工具为组蛋白甲基转移酶和去甲基酶在各种细胞过程中的机制和生理作用提供了重要的知识。除了这一主流研究方向,化学和化学相关技术的发展和应用也越来越多地涉及到生物学研究,并提供了通过标准分子生物学方法难以获得的信息。在此,我们综述了近年来在发展和应用化学和生化方法研究组蛋白甲基化方面的最新进展,包括染色质免疫沉淀、化学连接、质谱、生化甲基化和去甲基化测定以及抑制剂的开发。这些技术进步使组蛋白甲基化可以从全基因组水平到分子和原子水平进行研究。通过 ChIP 技术,可以获得关于特定启动子、基因或其他基因组区域的组蛋白甲基化模式的精确作图信息。MS 特别适用于检测和分析组蛋白和非组蛋白蛋白质底物中的甲基化标记。允许将甲基基团特异性地掺入组蛋白蛋白中的化学方法极大地促进了对单个修饰位点的甲基化生物学影响的研究。组蛋白甲基转移酶和去甲基酶的选择性有机抑制剂的发现和设计为研究甲基化介导的细胞途径提供了化学探针。总的来说,这些与化学相关的技术进步大大提高了我们对组蛋白甲基化在正常生理和疾病状态下的生物学功能的理解,并且也非常有潜力将基础表观遗传学研究转化为临床诊断和治疗应用。