Suppr超能文献

在气相色谱/热转化/同位素比质谱中,随着温度程序的变化,化合物特异性氢同位素比的变化。

Variation of compound-specific hydrogen isotope ratios under changing temperature program in gas chromatography/thermal conversion/isotope ratio mass spectrometry.

机构信息

State Key Laboratory of Loess and Quaternary Geology, IEE, CAS, Xi'an, 710075, PR China.

出版信息

Rapid Commun Mass Spectrom. 2012 Aug 30;26(16):1746-52. doi: 10.1002/rcm.6283.

Abstract

RATIONALE

In recent experiments, we found that compound-specific δ(2)H values can vary as a result of changing the gas chromatography temperature program under common pyrolysis conditions. To achieve better precision, it is necessary to examine the details and find a solution to this problem when using gas chromatography/thermal conversion/isotope ratio mass spectrometry (GC-TC-IRMS) for hydrogen isotope analysis.

METHODS

A test was designed to find the possible temperature effect under four different GC temperature ramp rates using n-alkanes (n-C(21), n-C(27), and n-C(31)) and fatty acids (n-C(12), n-C(18), and n-C(24)). The common 'hexane' method was used initially to condition the pyrolysis reactor. Experiments were then carried out using the 'methane condition' method because it was considered to improve pyrolysis efficiency.

RESULTS

Under the 'hexane condition' the measured hydrogen isotope ratios of the n-alkanes and n-fatty acids became more positive with increasing GC temperature ramp rate. The ion current intensity of hydrogen also generally increased. However, when the 'methane condition' method was used, the measured δ(2)H values of the n-alkanes and n-fatty acids showed little change under different GC temperature ramp rates.

CONCLUSIONS

Higher pyrolysis efficiency could reduce the tailing of the H(2) peak and the related isotopic variations at increased GC temperature ramp rates. In addition, too slow a temperature ramp rate could broaden the peak width and thus increase the background effect and possible isotopic fractionations in the split interface; this could also influence the hydrogen isotope values. We therefore suggest that the appropriate temperature ramp rate is an important factor in improving the precision in analyzing compound-specific hydrogen isotopes.

摘要

原理

在最近的实验中,我们发现,在常见的热裂解条件下,改变气相色谱温度程序会导致化合物特定的 δ(2)H 值发生变化。为了获得更好的精度,在使用气相色谱/热转化/同位素比质谱(GC-TC-IRMS)进行氢同位素分析时,有必要检查细节并找到解决此问题的方法。

方法

设计了一个测试,以在使用不同的 GC 温度斜坡率(4 种)的情况下,发现可能的温度效应,使用的物质为正构烷烃(n-C(21)、n-C(27) 和 n-C(31))和脂肪酸(n-C(12)、n-C(18) 和 n-C(24))。最初使用常见的“己烷”方法来调节热裂解反应器。然后使用“甲烷条件”方法进行实验,因为它被认为可以提高热裂解效率。

结果

在“己烷条件”下,随着 GC 温度斜坡率的增加,正构烷烃和 n-脂肪酸的测量氢同位素比值变得更加正。氢的离子电流强度也普遍增加。然而,当使用“甲烷条件”方法时,在不同的 GC 温度斜坡率下,正构烷烃和 n-脂肪酸的测量 δ(2)H 值几乎没有变化。

结论

更高的热裂解效率可以减少 H(2)峰的拖尾和相关的同位素变化,在增加的 GC 温度斜坡率下。此外,温度斜坡率太慢会使峰宽变宽,从而增加分裂界面的背景效应和可能的同位素分馏;这也可能影响氢同位素值。因此,我们建议适当的温度斜坡率是提高分析化合物特定氢同位素精度的重要因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验