Institute of Biochemistry, Faculty of Biosciences, Pharmacy, and Psychology, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany.
J Biol Chem. 2012 Sep 14;287(38):32181-94. doi: 10.1074/jbc.M112.349852. Epub 2012 Jul 9.
The prolactin-releasing peptide receptor and its bioactive RF-amide peptide (PrRP20) have been investigated to explore the ligand binding mode of peptide G-protein-coupled receptors (GPCRs). By receptor mutagenesis, we identified the conserved aspartate in the upper transmembrane helix 6 (Asp(6.59)) of the receptor as the first position that directly interacts with arginine 19 of the ligand (Arg(19)). Replacement of Asp(6.59) with Arg(19) of PrRP20 led to D6.59R, which turned out to be a constitutively active receptor mutant (CAM). This suggests that the mutated residue at the top of transmembrane helix 6 mimics Arg(19) by interacting with additional binding partners in the receptor. Next, we generated an initial comparative model of this CAM because no ligand docking was required, and we selected the next set of receptor mutants to find the engaged partners of the binding pocket. In an iterative process, we identified two acidic residues and two hydrophobic residues that form the peptide ligand binding pocket. As all residues are localized on top or in the upper part of the transmembrane domains, we clearly can show that the extracellular surface of the receptor is sufficient for full signal transduction for prolactin-releasing peptide, rather than a deep, membrane-embedded binding pocket. This contributes to the knowledge of the binding of peptide ligands to GPCRs and might facilitate the development of GPCR ligands, but it also provides new targeting of CAMs involved in hereditary diseases.
促泌乳素释放肽受体及其生物活性 RF 酰胺肽(PrRP20)已被研究用于探索肽 G 蛋白偶联受体(GPCR)的配体结合模式。通过受体突变,我们确定了受体上跨膜螺旋 6(TMH6)的保守天冬氨酸(Asp(6.59))为与配体中精氨酸 19(Arg(19))直接相互作用的第一个位置。用 PrRP20 中的精氨酸 19 替换 Asp(6.59)导致 D6.59R,这实际上是一种组成型激活的受体突变体(CAM)。这表明跨膜螺旋 6 顶部的突变残基通过与受体中的其他结合伙伴相互作用来模拟 Arg(19)。接下来,由于不需要配体对接,我们生成了这个 CAM 的初始比较模型,并且我们选择了下一组受体突变体来找到结合口袋的结合伙伴。在迭代过程中,我们确定了两个形成肽配体结合口袋的酸性残基和两个疏水性残基。由于所有残基都位于跨膜结构域的顶部或上部,因此我们可以清楚地表明,受体的细胞外表面足以进行完整的促泌乳素释放肽信号转导,而不是深的、嵌入膜中的结合口袋。这有助于了解肽配体与 GPCR 的结合,并可能促进 GPCR 配体的开发,但它也为涉及遗传性疾病的 CAM 提供了新的靶向。