Konopka Allan, Wilkins Michael J
Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
Front Microbiol. 2012 May 18;3:184. doi: 10.3389/fmicb.2012.00184. eCollection 2012.
Analysis of the growth-limiting factor or environmental stressors affecting microbes in situ is of fundamental importance but analytically difficult. Microbes can reduce in situ limiting nutrient concentrations to sub-micromolar levels, and contaminated ecosystems may contain multiple stressors. The patterns of gene or protein expression by microbes in nature can be used to infer growth limitations, because they are regulated in response to environmental conditions. Experimental studies under controlled conditions in the laboratory provide the physiological underpinnings for developing these physiological indicators. Although regulatory networks may differ among specific microbes, there are some broad principles that can be applied, related to limiting nutrient acquisition, resource allocation, and stress responses. As technologies for transcriptomics and proteomics mature, the capacity to apply these approaches to complex microbial communities will accelerate. Global proteomics has the particular advantage that it reflects expressed catalytic activities. Furthermore, the high mass accuracy of some proteomic approaches allows mapping back to specific microbial strains. For example, at the Rifle IFRC field site in Western Colorado, the physiological status of Fe(III)-reducing populations has been tracked over time. Members of a "subsurface clade" within the Geobacter predominated during carbon amendment to the subsurface environment. At the functional level, proteomic identifications produced inferences regarding (i) temporal changes in anabolism and catabolism of acetate, (ii) the onset of N(2) fixation when N became limiting, and (iii) expression of phosphate transporters during periods of intense growth. The application of these approaches in situ can lead to discovery of novel physiological adaptations.
分析影响原位微生物生长的限制因素或环境压力源至关重要,但在分析上具有难度。微生物可将原位限制营养物浓度降低至亚微摩尔水平,且受污染的生态系统可能包含多种压力源。自然界中微生物的基因或蛋白质表达模式可用于推断生长限制,因为它们会根据环境条件进行调节。实验室中受控条件下的实验研究为开发这些生理指标提供了生理基础。尽管特定微生物之间的调控网络可能不同,但存在一些可应用的广泛原则,与限制营养物获取、资源分配和应激反应有关。随着转录组学和蛋白质组学技术的成熟,将这些方法应用于复杂微生物群落的能力将会加快。全局蛋白质组学具有反映表达的催化活性这一特殊优势。此外,一些蛋白质组学方法的高质量准确性允许追溯到特定的微生物菌株。例如,在科罗拉多州西部的莱夫尔国际研究中心(IFRC)现场,随着时间的推移对铁(III)还原菌群的生理状态进行了跟踪。在地杆菌中的一个“地下进化枝”成员在向地下环境添加碳期间占主导地位。在功能层面,蛋白质组学鉴定得出了以下推断:(i)乙酸盐合成代谢和分解代谢的时间变化,(ii)当氮成为限制因素时固氮作用的开始,以及(iii)在快速生长期间磷酸盐转运蛋白的表达。这些方法在原位的应用可导致发现新的生理适应性。