State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, PR China.
Biosens Bioelectron. 2012 Oct-Dec;38(1):331-6. doi: 10.1016/j.bios.2012.06.011. Epub 2012 Jun 19.
A universal label-free metal ion sensor design strategy was developed on the basis of a metal ion-specific DNA/RNA-cleaving DNAzyme and a G-quadruplex DNAzyme. In this strategy, the substrate strand of the DNA/RNA-cleaving DNAzyme was designed as an intramolecular stem-loop structure, and a G-rich sequence was caged in the double-stranded stem and could not form catalytically active G-quadruplex DNAzyme. The metal ion-triggered cleavage of the substrate strand could result in the release of the G-rich sequence and subsequent formation of a catalytic G-quadruplex DNAzyme. The self-blocking mechanism of the G-quadruplex DNAzyme provided the sensing system with a low background signal. The signal amplifications of both the DNA/RNA-cleaving DNAzyme and the G-quadruplex DNAzyme provided the sensing system with a high level of sensitivity. This sensor design strategy can be used for metal ions with reported specific DNA/RNA-cleaving DNAzymes and extended for metal ions with unique properties. As examples, dual DNAzymes-based Cu(2+), Pb(2+) and Hg(2+) sensors were designed. These "turn-on" colorimetric sensors can simply detect Cu(2+), Pb(2+) and Hg(2+) with high levels of sensitivity and selectivity, with detection limits of 4 nM, 14 nM and 4 nM, respectively.
基于金属离子特异性 DNA/RNA 切割 DNA 酶和 G-四链体 DNA 酶,开发了一种通用的无标记金属离子传感器设计策略。在该策略中,DNA/RNA 切割 DNA 酶的底物链设计为分子内茎环结构,并且富含 G 的序列被笼在双链茎中,不能形成催化活性的 G-四链体 DNA 酶。金属离子触发底物链的切割会导致富含 G 的序列释放,并随后形成催化 G-四链体 DNA 酶。G-四链体 DNA 酶的自我阻断机制为传感系统提供了低背景信号。DNA/RNA 切割 DNA 酶和 G-四链体 DNA 酶的信号放大为传感系统提供了高灵敏度。该传感器设计策略可用于具有报道的特异性 DNA/RNA 切割 DNA 酶的金属离子,并扩展到具有独特性质的金属离子。例如,设计了基于双重 DNA 酶的 Cu(2+)、Pb(2+)和 Hg(2+)传感器。这些“开式”比色传感器可以简单地高灵敏度和选择性地检测 Cu(2+)、Pb(2+)和 Hg(2+),检测限分别为 4 nM、14 nM 和 4 nM。