Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA.
Bioorg Chem. 2012 Oct;44:8-18. doi: 10.1016/j.bioorg.2012.06.001. Epub 2012 Jun 23.
The present study was undertaken to gain insight into the associations of mercury(II) with dicysteinyl tripeptides in buffered media at pH 7.4. We investigated the effects of increasing the distance between cysteinyl residues on mercury(II) associations and complex formations. The peptide-mercury(II) formation constants and their associated thermodynamic parameters in 3-(N-morpholino)propanesulfonic acid (MOPS) buffered solutions were evaluated by isothermal titration calorimetry. Complexes formed in different relative ratios of mercury(II) to cysteinyl peptides in ammonium formate buffered solutions were characterized by LTQ Orbitrap mass spectrometry. The results from these studies show that n-alkyl dicysteinyl peptides (CP 1-4), and an aryl dicysteinyl peptide (CP 5) can serve as effective "double anchors" to accommodate the coordination sites of mercury(II) to form predominantly one-to-one Hg(peptide) complexes. The aryl dicysteinyl peptide (CP 5) also forms the two-to-two Hg(2)(peptide)(2) complex. In the presence of excess peptide, Hg(peptide)(2) complexes are also detected. Notably, increasing the distance between the ligating groups or "anchor points" in CP 1-5 does not significantly affect their affinity for mercury(II). However, the enthalpy change (ΔH) values (ΔH(1) ~ -91 kJ mol(-1) and ΔH(2) ~ -66 kJ mol(-1)) for complex formation between CP 4 and 5 with mercury(II) are about one and a half times larger than the related values for CP 1, 2 and 3 (ΔH(1) ~ -66 kJ mol(-1) and ΔH(2) ~ 46 kJ mol(-1)). The corresponding entropy change (ΔS) values (ΔS(1) ~ -129 J K(-1) mol(-1) and ΔS(2) ~ -116 J K(-1) mol(-1)) of the structurally larger dicysteinyl peptides CP 4 and 5 are less entropically favorable than for CP 1, 2 and 3 (ΔS(1) ~ -48 J K(-1) mol(-1) and ΔS(2) ~ -44 J K(-1) mol(-1)). Generally, these associations result in a decrease in entropy, indicating that these peptide-mercury complexes potentially form highly ordered structures. The results from this study show that dicysteinyl tripeptides are effective in binding mercury(II) and they are promising motifs for the design of multi-cysteinyl peptides for binding more than one mercury(II) ion per peptide.
本研究旨在深入了解汞(II)与缓冲介质中双半胱氨酸三肽的相互作用。我们研究了增加半胱氨酸残基之间距离对汞(II)结合和配合物形成的影响。采用等温滴定微量热法评估了在 3-(N-吗啉基)丙磺酸 (MOPS) 缓冲溶液中肽-汞(II)形成常数及其相关热力学参数。在甲酸铵缓冲溶液中,以不同的汞(II)与半胱氨酸肽相对比例形成的配合物通过 LTQ Orbitrap 质谱进行了表征。这些研究结果表明,正构烷基二半胱氨酸肽 (CP 1-4) 和芳基二半胱氨酸肽 (CP 5) 可作为有效的“双锚”,以容纳汞(II)的配位位点,形成主要的 1:1 Hg(肽)配合物。芳基二半胱氨酸肽 (CP 5) 还形成 2:2 Hg 2 (肽) 2 配合物。在存在过量肽的情况下,也检测到 Hg(肽) 2 配合物。值得注意的是,增加 CP 1-5 中连接基团或“锚点”之间的距离对其与汞(II)的亲和力没有显著影响。然而,CP 4 和 5 与汞(II)形成配合物的焓变 (ΔH) 值 (ΔH 1 ~ -91 kJ mol -1 和 ΔH 2 ~ -66 kJ mol -1 ) 比 CP 1、2 和 3 的相关值大约一倍 (ΔH 1 ~ -66 kJ mol -1 和 ΔH 2 ~ 46 kJ mol -1 )。结构较大的二半胱氨酸肽 CP 4 和 5 的相应熵变 (ΔS) 值 (ΔS 1 ~ -129 J K -1 mol -1 和 ΔS 2 ~ -116 J K -1 mol -1 ) 不如 CP 1、2 和 3 的熵变有利 (ΔS 1 ~ -48 J K -1 mol -1 和 ΔS 2 ~ -44 J K -1 mol -1 )。通常,这些相互作用导致熵降低,表明这些肽-汞配合物可能形成高度有序的结构。本研究结果表明,二半胱氨酸三肽可有效结合汞(II),是设计结合多个汞(II)离子的多半胱氨酸肽的有前途的基序。