Suppr超能文献

在体培养新生大鼠皮层桶状脑区的长时程增强现象。

Long-term potentiation in the neonatal rat barrel cortex in vivo.

机构信息

Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany.

出版信息

J Neurosci. 2012 Jul 11;32(28):9511-6. doi: 10.1523/JNEUROSCI.1212-12.2012.

Abstract

Long-term potentiation (LTP) is important for the activity-dependent formation of early cortical circuits. In the neonatal rodent barrel cortex, LTP has been studied only in vitro. We combined voltage-sensitive dye imaging with extracellular multielectrode recordings to study whisker stimulation-induced LTP in the whisker-to-barrel cortex pathway of the neonatal rat barrel cortex in vivo. Single whisker stimulation at 2 Hz for 10 min induced an age-dependent expression of LTP in postnatal day (P) 0 to P14 rats, with the strongest expression of LTP at P3-P5. The magnitude of LTP was largest in the activated barrel-related column, smaller in the surrounding septal region, and no LTP could be observed in the neighboring barrel. Current source density analyses revealed an LTP-associated increase of synaptic current sinks in layer IV/lower layer II/III at P3-P5 and in the cortical plate/upper layer V at P0-P1. Our study demonstrates for the first time an age-dependent and spatially confined LTP in the barrel cortex of the newborn rat in vivo.

摘要

长时程增强(LTP)对于依赖活动的早期皮质回路形成很重要。在新生啮齿动物的桶状皮层中,仅在体外研究了 LTP。我们将电压敏感染料成像与细胞外多电极记录相结合,在新生大鼠桶状皮层的胡须到皮层通路中研究体内胡须刺激诱导的 LTP。用 2 Hz 的单根胡须刺激 10 分钟,在 P0 到 P14 天的大鼠中诱导出依赖年龄的 LTP 表达,其中 P3-P5 时表达最强。LTP 的幅度在激活的与胡须相关的柱中最大,在周围的隔区中较小,在相邻的桶中则无法观察到 LTP。电流源密度分析显示,在 P3-P5 时,LTP 相关的突触电流汇在 IV 层/下层 II/III 以及在 P0-P1 时在皮质板/上层 V 中增加。我们的研究首次证明了新生大鼠桶状皮层中依赖年龄和空间限制的 LTP。

相似文献

1
Long-term potentiation in the neonatal rat barrel cortex in vivo.
J Neurosci. 2012 Jul 11;32(28):9511-6. doi: 10.1523/JNEUROSCI.1212-12.2012.
2
Developmental switch in spike timing-dependent plasticity at layers 4-2/3 in the rodent barrel cortex.
J Neurosci. 2012 Oct 24;32(43):15000-11. doi: 10.1523/JNEUROSCI.2506-12.2012.
4
Whisker row deprivation affects the flow of sensory information through rat barrel cortex.
J Neurophysiol. 2017 Jan 1;117(1):4-17. doi: 10.1152/jn.00289.2016. Epub 2016 Oct 5.
5
The Nature of the Sensory Input to the Neonatal Rat Barrel Cortex.
J Neurosci. 2016 Sep 21;36(38):9922-32. doi: 10.1523/JNEUROSCI.1781-16.2016.
7
Differential columnar processing in local circuits of barrel and insular cortices.
J Neurosci. 2008 Mar 19;28(12):3076-89. doi: 10.1523/JNEUROSCI.0172-08.2008.
9
Long-term potentiation in vivo in layers II/III of rat barrel cortex.
Neuropharmacology. 1998 Apr-May;37(4-5):581-92. doi: 10.1016/s0028-3908(98)00039-2.
10
Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex.
J Neurosci. 2007 Nov 28;27(48):13316-28. doi: 10.1523/JNEUROSCI.2210-07.2007.

引用本文的文献

1
Experience-Dependent Intrinsic Plasticity in Layer IV of Barrel Cortex at Whisking Onset.
eNeuro. 2025 Aug 19;12(8). doi: 10.1523/ENEURO.0252-25.2025. Print 2025 Aug.
2
Enhancing anesthetic techniques for improving whisker stimulation response in the barrel cortex.
PLoS One. 2025 Feb 25;20(2):e0318306. doi: 10.1371/journal.pone.0318306. eCollection 2025.
4
Optimization of modularity during development to simplify walking control across multiple steps.
Front Neural Circuits. 2024 Jan 26;17:1340298. doi: 10.3389/fncir.2023.1340298. eCollection 2023.
5
Recovery kinetics of short-term depression of GABAergic and glutamatergic synapses at layer 2/3 pyramidal cells in the mouse barrel cortex.
Front Cell Neurosci. 2023 Sep 25;17:1254776. doi: 10.3389/fncel.2023.1254776. eCollection 2023.
6
Generating variability from motor primitives during infant locomotor development.
Elife. 2023 Jul 31;12:e87463. doi: 10.7554/eLife.87463.
7
Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation.
Neuropsychopharmacology. 2023 Jan;48(1):191-208. doi: 10.1038/s41386-022-01453-8. Epub 2022 Oct 5.

本文引用的文献

1
Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo.
J Neurosci. 2011 Dec 7;31(49):18155-65. doi: 10.1523/JNEUROSCI.5289-11.2011.
2
Early γ oscillations synchronize developing thalamus and cortex.
Science. 2011 Oct 14;334(6053):226-9. doi: 10.1126/science.1210574.
3
Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities.
Brain Res Rev. 2010 Sep;64(1):160-76. doi: 10.1016/j.brainresrev.2010.03.005. Epub 2010 Apr 8.
4
The subplate and early cortical circuits.
Annu Rev Neurosci. 2010;33:23-48. doi: 10.1146/annurev-neuro-060909-153244.
5
Subplate cells: amplifiers of neuronal activity in the developing cerebral cortex.
Front Neuroanat. 2009 Oct 7;3:19. doi: 10.3389/neuro.05.019.2009. eCollection 2009.
6
Three patterns of oscillatory activity differentially synchronize developing neocortical networks in vivo.
J Neurosci. 2009 Jul 15;29(28):9011-25. doi: 10.1523/JNEUROSCI.5646-08.2009.
7
Long-term plasticity in mouse sensorimotor circuits after rhythmic whisker stimulation.
J Neurosci. 2009 Apr 22;29(16):5326-35. doi: 10.1523/JNEUROSCI.5965-08.2009.
10
Developmental synaptic plasticity at the thalamocortical input to barrel cortex: mechanisms and roles.
Mol Cell Neurosci. 2007 Apr;34(4):493-502. doi: 10.1016/j.mcn.2007.01.001. Epub 2007 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验