Jacob Vincent, Mitani Akinori, Toyoizumi Taro, Fox Kevin
School of Biosciences, Cardiff University, Cardiff, United Kingdom.
RIKEN Brain Science Institute, Wako, Saitama, Japan; and.
J Neurophysiol. 2017 Jan 1;117(1):4-17. doi: 10.1152/jn.00289.2016. Epub 2016 Oct 5.
Whisker trimming causes substantial reorganization of neuronal response properties in barrel cortex. However, little is known about experience-dependent rerouting of sensory processing following sensory deprivation. To address this, we performed in vivo intracellular recordings from layers 2/3 (L2/3), layer 4 (L4), layer 5 regular-spiking (L5RS), and L5 intrinsically bursting (L5IB) neurons and measured their multiwhisker receptive field at the level of spiking activity, membrane potential, and synaptic conductance before and after sensory deprivation. We used Chernoff information to quantify the "sensory information" contained in the firing patterns of cells in response to spared and deprived whisker stimulation. In the control condition, information for flanking-row and same-row whiskers decreased in the order L4, L2/3, L5IB, L5RS. However, after whisker-row deprivation, spared flanking-row whisker information was reordered to L4, L5RS, L5IB, L2/3. Sensory information from the trimmed whiskers was reduced and delayed in L2/3 and L5IB neurons, whereas sensory information from spared whiskers was increased and advanced in L4 and L5RS neurons. Sensory information from spared whiskers was increased in L5IB neurons without a latency change. L5RS cells exhibited the largest changes in sensory information content through an atypical plasticity combining a significant decrease in spontaneous activity and an increase in a short-latency excitatory conductance.
NEW & NOTEWORTHY: Sensory cortical plasticity is usually quantified by changes in evoked firing rate. In this study we quantified plasticity by changes in sensory detection performance using Chernoff information and receiver operating characteristic analysis. We found that whisker deprivation causes a change in information flow within the cortical layers and that layer 5 regular-spiking cells, despite showing only a small potentiation of short-latency input, show the greatest increase in information content for the spared input partly by decreasing their spontaneous activity.
修剪触须会导致桶状皮层中神经元反应特性的大量重组。然而,对于感觉剥夺后依赖经验的感觉处理重新布线知之甚少。为了解决这个问题,我们对第2/3层(L2/3)、第4层(L4)、第5层规则发放(L5RS)和第5层内在爆发(L5IB)神经元进行了体内细胞内记录,并在感觉剥夺前后,在动作电位、膜电位和突触电导水平测量了它们的多触须感受野。我们使用切尔诺夫信息来量化细胞放电模式中响应保留和剥夺触须刺激所包含的“感觉信息”。在对照条件下,相邻排和同一排触须的信息按L4、L2/3、L5IB、L5RS的顺序减少。然而,在剥夺触须排后,保留的相邻排触须信息重新排序为L4、L5RS、L5IB、L2/3。来自修剪触须的感觉信息在L2/3和L5IB神经元中减少并延迟,而来自保留触须的感觉信息在L4和L5RS神经元中增加并提前。来自保留触须的感觉信息在L5IB神经元中增加且潜伏期无变化。L5RS细胞通过一种非典型可塑性表现出感觉信息含量的最大变化,这种可塑性包括自发活动显著降低和短潜伏期兴奋性电导增加。
感觉皮层可塑性通常通过诱发放电率的变化来量化。在本研究中,我们使用切尔诺夫信息和接受者操作特征分析,通过感觉检测性能的变化来量化可塑性。我们发现触须剥夺会导致皮层层内信息流的变化,并且第5层规则发放细胞尽管仅显示短潜伏期输入的小幅增强,但部分通过降低其自发活动,显示出保留输入的信息含量增加最多。