Electronic Materials Research Centre, Korea Institute of Science and Technology, Hwarangno 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea.
Rep Prog Phys. 2012 Jul;75(7):076502. doi: 10.1088/0034-4885/75/7/076502. Epub 2012 Jun 28.
The resistance switching behaviour of several materials has recently attracted considerable attention for its application in non-volatile memory (NVM) devices, popularly described as resistive random access memories (RRAMs). RRAM is a type of NVM that uses a material(s) that changes the resistance when a voltage is applied. Resistive switching phenomena have been observed in many oxides: (i) binary transition metal oxides (TMOs), e.g. TiO(2), Cr(2)O(3), FeO(x) and NiO; (ii) perovskite-type complex TMOs that are variously functional, paraelectric, ferroelectric, multiferroic and magnetic, e.g. (Ba,Sr)TiO(3), Pb(Zr(x) Ti(1-x))O(3), BiFeO(3) and Pr(x)Ca(1-x)MnO(3); (iii) large band gap high-k dielectrics, e.g. Al(2)O(3) and Gd(2)O(3); (iv) graphene oxides. In the non-oxide category, higher chalcogenides are front runners, e.g. In(2)Se(3) and In(2)Te(3). Hence, the number of materials showing this technologically interesting behaviour for information storage is enormous. Resistive switching in these materials can form the basis for the next generation of NVM, i.e. RRAM, when current semiconductor memory technology reaches its limit in terms of density. RRAMs may be the high-density and low-cost NVMs of the future. A review on this topic is of importance to focus concentration on the most promising materials to accelerate application into the semiconductor industry. This review is a small effort to realize the ambitious goal of RRAMs. Its basic focus is on resistive switching in various materials with particular emphasis on binary TMOs. It also addresses the current understanding of resistive switching behaviour. Moreover, a brief comparison between RRAMs and memristors is included. The review ends with the current status of RRAMs in terms of stability, scalability and switching speed, which are three important aspects of integration onto semiconductors.
近年来,几种材料的电阻开关行为因其在非易失性存储器(NVM)器件中的应用而引起了相当大的关注,通常被描述为电阻式随机存取存储器(RRAM)。RRAM 是一种 NVM,它使用一种材料(s),当施加电压时,该材料的电阻会发生变化。在许多氧化物中已经观察到电阻开关现象:(i)二元过渡金属氧化物(TMOs),例如 TiO(2)、Cr(2)O(3)、FeO(x)和 NiO;(ii)钙钛矿型复合 TMOs,具有各种功能,如弛豫铁电体、铁电体、多铁体和磁性,例如 (Ba,Sr)TiO(3)、Pb(Zr(x)Ti(1-x))O(3)、BiFeO(3)和 Pr(x)Ca(1-x)MnO(3);(iii)宽带隙高 k 电介质,例如 Al(2)O(3)和 Gd(2)O(3);(iv)氧化石墨烯。在非氧化物类别中,更高的硫属化物是领跑者,例如 In(2)Se(3)和 In(2)Te(3)。因此,具有这种技术上有趣的信息存储行为的材料数量是巨大的。这些材料中的电阻开关可以为下一代 NVM,即 RRAM ,提供基础,因为当前的半导体存储技术在密度方面已经达到了极限。RRAM 可能是未来高密度和低成本的 NVM。因此,对这个主题进行综述对于将重点集中在最有前途的材料上以加速应用到半导体行业中非常重要。本综述是实现 RRAM 宏伟目标的一小步。它的基本重点是各种材料的电阻开关,特别是二元 TMOs。它还涉及到对电阻开关行为的当前理解。此外,还包括 RRAM 与忆阻器之间的简要比较。综述以 RRAM 在稳定性、可扩展性和开关速度方面的当前状态结束,这是集成到半导体上的三个重要方面。