Banyan Biomarkers. Inc., 13400 Progress Blvd, Alachua, Florida 32615, USA.
Toxicol Sci. 2012 Nov;130(1):158-67. doi: 10.1093/toxsci/kfs224. Epub 2012 Jul 12.
Glutamate excitotoxicity plays a key role in the etiology of a variety of neurological, psychiatric, and neurodegenerative disorders. The goal of this study was to investigate spatiotemporal distribution in the brain and cerebrospinal fluid (CSF) concentrations of ubiquitin C-terminal hydrolase-1 (UCH-L1), glial fibrillary acidic protein (GFAP), αII-spectrin breakdown products (SBDP150, SBDP145, and SBDP120), and their relationship to neuropathology in an animal model of kainic acid (KA) excitotoxicity. Triple fluorescent labeling and Fluoro-Jade C staining revealed a reactive gliosis in brain and specific localization of degenerating neurons in hippocampus and entorhinal cortex of KA-treated rats. Immunohistochemistry showed upregulation of GFAP expression in hippocampus and cortex beginning 24h post KA injection and peaking at 48h. At these time points concurrent with extensive neurodegeneration all SBDPs were observed throughout the brain. At 24h post KA injection, a loss of structural integrity was observed in cellular distribution of UCH-L1 that correlated with an increase in immunopositive material in the extracellular matrix. CSF levels of UCH-L1, GFAP, and SBDPs were significantly increased in KA-treated animals compared with controls. The temporal increase in CSF biomarkers correlated with brain tissue distribution and neurodegeneration. This study provided evidence supporting the use of CSF levels of glial and neuronal protein biomarkers to assess neurotoxic damage in preclinical animal models that could prove potentially translational to the clinic. The molecular nature of these biomarkers can provide critical information on the underlying mechanisms of neurotoxicity that might facilitate the development of novel drugs and allow physicians to monitor drug safety.
谷氨酸兴奋性毒性在多种神经、精神和神经退行性疾病的发病机制中起着关键作用。本研究的目的是研究在红藻氨酸(KA)兴奋性毒性动物模型中脑和脑脊液(CSF)中泛素 C 端水解酶-1(UCH-L1)、神经胶质纤维酸性蛋白(GFAP)、αII- spectrin 断裂产物(SBDP150、SBDP145 和 SBDP120)的时空分布及其与神经病理学的关系。三重荧光标记和 Fluoro-Jade C 染色显示 KA 处理大鼠海马和内嗅皮质中存在反应性神经胶质增生和特定的变性神经元定位。免疫组织化学显示 GFAP 表达在海马和皮质中的上调始于 KA 注射后 24 小时,并在 48 小时达到高峰。在这些时间点,与广泛的神经退行性变同时,所有 SBDP 都在整个大脑中观察到。在 KA 注射后 24 小时,UCH-L1 的细胞分布观察到结构完整性丧失,与细胞外基质中免疫阳性物质的增加相关。与对照组相比,KA 处理动物的 CSF 中 UCH-L1、GFAP 和 SBDP 水平显著升高。CSF 生物标志物的时间增加与脑组织分布和神经退行性变相关。这项研究提供了证据支持使用 CSF 中神经胶质和神经元蛋白生物标志物来评估临床前动物模型中的神经毒性损伤,这可能具有潜在的转化为临床的潜力。这些生物标志物的分子性质可以提供有关神经毒性潜在机制的关键信息,这可能有助于开发新的药物,并使医生能够监测药物安全性。