Bailes Julian, Gazi Sara, Ivanova Rositsa, Soloviev Mikhail
School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK.
Methods Mol Biol. 2012;906:89-99. doi: 10.1007/978-1-61779-953-2_7.
Immobilization of functional proteins such as enzymes on solid surfaces produces a variety of effects ranging from the reversal and strong inhibition to the enhancement of protein stability and function. Such effects are protein-dependent and are affected by the physical and chemical properties of the surfaces. Functional consequences of protein immobilization on the surface of gold nanoparticles (AuNPs) are protein-dependent and require thorough investigation using suitable functional tests. However, traditional approaches to making control samples, i.e., immobilized protein vs. protein in solution in absence of any nanoparticles do not provide sufficiently identical reaction conditions and complicate interpretation of the results. This report provides advice and methods for preparing AuNP-conjugated preparations generally suitable for studying the effects of immobilization on the activity and stability of different functional proteins. We use bovine catalase to illustrate our approach, but the methods are easily adaptable to any other enzyme or protein. The AuNP-immobilized enzyme showed increased stability at elevated temperatures compared to the same enzyme in solution.
将诸如酶等功能蛋白固定在固体表面会产生多种效应,从逆转和强烈抑制到增强蛋白质稳定性和功能不等。这些效应取决于蛋白质,并受表面物理和化学性质的影响。蛋白质固定在金纳米颗粒(AuNP)表面的功能后果取决于蛋白质,需要使用合适的功能测试进行深入研究。然而,制备对照样品的传统方法,即在不存在任何纳米颗粒的情况下将固定化蛋白质与溶液中的蛋白质进行比较,并不能提供足够相同的反应条件,且会使结果的解释变得复杂。本报告提供了制备通常适用于研究固定化对不同功能蛋白活性和稳定性影响的金纳米颗粒缀合制剂的建议和方法。我们使用牛过氧化氢酶来说明我们的方法,但这些方法很容易适用于任何其他酶或蛋白质。与溶液中的相同酶相比,固定在金纳米颗粒上的酶在升高的温度下表现出更高的稳定性。