Ponce Arturo, Mejía-Rosales Sergio, José-Yacamán Miguel
Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA.
Methods Mol Biol. 2012;906:453-71. doi: 10.1007/978-1-61779-953-2_37.
Here we review the scanning transmission electron microscopy (STEM) characterization technique and STEM imaging methods. We describe applications of STEM for studying inorganic nanoparticles, and other uses of STEM in biological and health sciences and discuss how to interpret STEM results. The STEM imaging mode has certain benefits compared with the broad-beam illumination mode; the main advantage is the collection of the information about the specimen using a high angular annular dark field (HAADF) detector, in which the images registered have different levels of contrast related to the chemical composition of the sample. Another advantage of its use in the analysis of biological samples is its contrast for thick stained sections, since HAADF images of samples with thickness of 100-120 nm have notoriously better contrast than those obtained by other techniques. Combining the HAADF-STEM imaging with the new aberration correction era, the STEM technique reaches a direct way to imaging the atomistic structure and composition of nanostructures at a sub-angstrom resolution. Thus, alloying in metallic nanoparticles is directly resolved at atomic scale by the HAADF-STEM imaging, and the comparison of the STEM images with results from simulations gives a very powerful way of analysis of structure and composition. The use of X-ray energy dispersive spectroscopy attached to the electron microscope for STEM mode is also described. In issues where characterization at the atomic scale of the interaction between metallic nanoparticles and biological systems is needed, all the associated techniques to STEM become powerful tools for the best understanding on how to use these particles in biomedical applications.
在此,我们回顾扫描透射电子显微镜(STEM)表征技术和STEM成像方法。我们描述了STEM在研究无机纳米颗粒方面的应用,以及STEM在生物和健康科学中的其他用途,并讨论如何解读STEM结果。与宽束照明模式相比,STEM成像模式具有一定优势;主要优点是使用高角度环形暗场(HAADF)探测器收集有关样品的信息,其中记录的图像具有与样品化学成分相关的不同对比度水平。其在生物样品分析中的另一个优势是对厚染色切片具有对比度,因为厚度为100 - 120 nm的样品的HAADF图像的对比度明显优于通过其他技术获得的图像。将HAADF - STEM成像与新的像差校正时代相结合,STEM技术成为一种以亚埃分辨率直接成像纳米结构的原子结构和组成的方法。因此,通过HAADF - STEM成像可以在原子尺度上直接解析金属纳米颗粒中的合金化,并且将STEM图像与模拟结果进行比较提供了一种非常强大的结构和组成分析方法。还描述了在STEM模式下连接到电子显微镜的X射线能量色散光谱的使用。在需要对金属纳米颗粒与生物系统之间的相互作用进行原子尺度表征的问题中,所有与STEM相关的技术都成为强大的工具,有助于更好地理解如何在生物医学应用中使用这些颗粒。