Suppr超能文献

通过扫描透射电子显微镜对 InGaN 的成分映射。

Composition mapping in InGaN by scanning transmission electron microscopy.

机构信息

Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, D-28359 Bremen, Germany.

出版信息

Ultramicroscopy. 2011 Jul;111(8):1316-27. doi: 10.1016/j.ultramic.2011.04.009. Epub 2011 Apr 30.

Abstract

We suggest a method for chemical mapping that is based on scanning transmission electron microscopy (STEM) imaging with a high-angle annular dark field (HAADF) detector. The analysis method uses a comparison of intensity normalized with respect to the incident electron beam with intensity calculated employing the frozen lattice approximation. This procedure is validated with an In(0.07)Ga(0.93)N layer with homogeneous In concentration, where the STEM results were compared with energy filtered imaging, strain state analysis and energy dispersive X-ray analysis. Good agreement was obtained, if the frozen lattice simulations took into account static atomic displacements, caused by the different covalent radii of In and Ga atoms. Using a sample with higher In concentration and series of 32 images taken within 42 min scan time, we did not find any indication for formation of In rich regions due to electron beam irradiation, which is reported in literature to occur for the parallel illumination mode. Image simulation of an In(0.15)Ga(0.85)N layer that was elastically relaxed with empirical Stillinger-Weber potentials did not reveal significant impact of lattice plane bending on STEM images as well as on the evaluated In concentration profiles for specimen thicknesses of 5, 15 and 50 nm. Image simulation of an abrupt interface between GaN and In(0.15)Ga(0.85)N for specimen thicknesses up to 200 nm showed that artificial blurring of interfaces is significantly smaller than expected from a simple geometrical model that is based on the beam convergence only. As an application of the method, we give evidence for the existence of In rich regions in an InGaN layer which shows signatures of quantum dot emission in microphotoluminescence spectroscopy experiments.

摘要

我们提出了一种基于扫描透射电子显微镜(STEM)成像与高角度环形暗场(HAADF)探测器的化学映射方法。该分析方法使用相对于入射电子束的强度进行归一化的强度与使用冻结晶格近似计算的强度进行比较。通过具有均匀 In 浓度的 In(0.07)Ga(0.93)N 层对 STEM 结果进行了验证,其中将 STEM 结果与能量过滤成像、应变状态分析和能量色散 X 射线分析进行了比较。如果冻结晶格模拟考虑了由于 In 和 Ga 原子的不同共价半径而引起的静态原子位移,则可以获得良好的一致性。使用具有较高 In 浓度的样品和在 42 分钟扫描时间内拍摄的 32 个系列图像,我们没有发现任何由于电子束照射而形成富 In 区域的迹象,这在文献中报道为平行照明模式下会发生。使用经验 Stillinger-Weber 势弹性弛豫的 In(0.15)Ga(0.85)N 层的图像模拟并未显示晶格平面弯曲对 STEM 图像以及对于厚度为 5、15 和 50nm 的样品的评估 In 浓度分布的显著影响。对于厚度高达 200nm 的 GaN 和 In(0.15)Ga(0.85)N 之间的突然界面的图像模拟表明,界面的人为模糊比仅基于束收敛的简单几何模型预期的要小得多。作为该方法的应用,我们证明了在 InGaN 层中存在富 In 区域的证据,该区域在微光致发光光谱实验中显示出量子点发射的特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验