Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, USA.
J Am Chem Soc. 2012 Aug 15;134(32):13374-85. doi: 10.1021/ja3040762. Epub 2012 Aug 3.
(195)Pt, (14)N, and (15)N NMR data for five azido (N(3)(-)) complexes are studied using relativistic density functional theory (DFT). Good agreement with experiment is obtained for Pt and N chemical shifts as well as Pt-N J-coupling constants. Calculated (14)N electric field gradients (EFGs) reflect experimentally observed trends for the line broadening of azido (14)N NMR signals. A localized molecular orbital analysis of the nitrogen EFGs and chemical shifts is performed to explain some interesting trends seen experimentally and in the first-principles calculations: (i) (14)N NMR signals for the Pt-coordinating (N(α)) nuclei in the azido ligands are much broader than for the central (N(β)) or terminal (N(γ)) atoms. The N(β) signals are particularly narrow; (ii) compared to N(γ), the N(α) nuclei are particularly strongly shielded; (iii) N(β) nuclei have much larger chemical shifts than N(α) and N(γ) ; and (iv) The Pt-N(α) J-coupling constants are small in magnitude when considering the formal sp hybridization of N(α). It is found that for N(α) a significant shielding reduction due to formation of the dative N(α)-Pt bond is counterbalanced by an increased shielding from spin-orbit (SO) coupling originating at Pt. Upon coordination, the strongly delocalized π system of free azide localizes somewhat on N(β) and N(γ). This effect, along with rehybridization at N(α) upon bond formation with Pt, is shown to cause a deshielding of N(γ) relative to N(α) and a strong increase of the EFG at N(α). The large 2p character of the azide σ bonds is responsible for the particularly high N(β) chemical shifts. The nitrogen s-character of the Pt-N(α) bond is low, which is the reason for the small J-coupling. Similar bonding situations are likely to be found in azide complexes with other transition metals.
使用相对论密度泛函理论(DFT)研究了五个叠氮化物(N3-)配合物的195Pt、14N 和 15N NMR 数据。Pt 和 N 化学位移以及 Pt-N J 耦合常数与实验结果吻合良好。计算得到的14N 电场梯度(EFG)反映了实验观察到的叠氮14N NMR 信号线宽拓宽的趋势。对氮 EFG 和化学位移进行局域分子轨道分析,以解释实验和第一性原理计算中观察到的一些有趣趋势:(i)叠氮配体中与 Pt 配位的(Nα)核的14N NMR 信号比中心(Nβ)或末端(Nγ)原子宽得多。Nβ信号特别窄;(ii)与 Nγ相比,Nα 核受到强烈屏蔽;(iii)Nβ 核的化学位移比 Nα 和 Nγ大得多;(iv)考虑到 Nα 的形式 sp 杂化,Pt-Nα J 耦合常数的大小很小。发现对于 Nα,由于形成 dative Nα-Pt 键,屏蔽减少量与来自 Pt 的自旋轨道(SO)耦合引起的增加屏蔽量相平衡。配位后,游离叠氮的强离域π体系在 Nβ 和 Nγ 上略有定域。这种效应以及与 Pt 形成键时 Nα 上的重新杂化,导致 Nγ 相对于 Nα 的去屏蔽和 Nα 上 EFG 的强烈增加。叠氮σ键的 2p 特征负责 Nβ 处特别高的化学位移。Pt-Nα 键的氮 s 特征较低,这是 J 耦合较小的原因。类似的键合情况可能存在于其他过渡金属的叠氮配合物中。