California Institute for Quantitative Biosciences, 374D Stanley Hall #3220, University of California, Berkeley, Berkeley, CA 94720-3220, USA.
Structure. 2012 Sep 5;20(9):1478-89. doi: 10.1016/j.str.2012.05.017. Epub 2012 Jul 12.
Primases are DNA-dependent RNA polymerases found in all cellular organisms. In bacteria, primer synthesis is carried out by DnaG, an essential enzyme that serves as a key component of DNA replication initiation, progression, and restart. How DnaG associates with nucleotide substrates and how certain naturally prevalent nucleotide analogs impair DnaG function are unknown. We have examined one of the earliest stages in primer synthesis and its control by solving crystal structures of the S. aureus DnaG catalytic core bound to metal ion cofactors and either individual nucleoside triphosphates or the nucleotidyl alarmones, pppGpp and ppGpp. These structures, together with both biochemical analyses and comparative studies of enzymes that use the same catalytic fold as DnaG, pinpoint the predominant nucleotide-binding site of DnaG and explain how the induction of the stringent response in bacteria interferes with primer synthesis.
引物酶是一种在所有细胞生物中都存在的依赖于 DNA 的 RNA 聚合酶。在细菌中,引物的合成是由 DnaG 完成的,DnaG 是一种必需的酶,它是 DNA 复制起始、延伸和重新启动的关键组成部分。DnaG 如何与核苷酸底物结合,以及某些天然存在的核苷酸类似物如何损害 DnaG 的功能,目前尚不清楚。我们通过解决金黄色葡萄球菌 DnaG 催化核心与金属离子辅因子以及单个核苷三磷酸或核苷酸警报素 pppGpp 和 ppGpp 结合的晶体结构,研究了引物合成及其调控的最早阶段之一。这些结构,以及生化分析和对使用与 DnaG 相同催化折叠的酶的比较研究,确定了 DnaG 的主要核苷酸结合位点,并解释了细菌中严格反应的诱导如何干扰引物合成。