Suppr超能文献

4D 放射治疗管理呼吸运动的进展:第二部分 - 4D 治疗计划。

Advances in 4D radiation therapy for managing respiration: part II - 4D treatment planning.

机构信息

Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, USA.

出版信息

Z Med Phys. 2012 Dec;22(4):272-80. doi: 10.1016/j.zemedi.2012.06.011. Epub 2012 Jul 15.

Abstract

The development of 4D CT imaging technology made possible the creation of patient models that are reflective of respiration-induced anatomical changes by adding a temporal dimension to the conventional 3D, spatial-only, patient description. This had opened a new venue for treatment planning and radiation delivery, aimed at creating a comprehensive 4D radiation therapy process for moving targets. Unlike other breathing motion compensation strategies (e.g. breath-hold and gating techniques), 4D radiotherapy assumes treatment delivery over the entire respiratory cycle - an added bonus for both patient comfort and treatment time efficiency. The time-dependent positional and volumetric information holds the promise for optimal, highly conformal, radiotherapy for targets experiencing movements caused by respiration, with potentially elevated dose prescriptions and therefore higher cure rates, while avoiding the uninvolved nearby structures. In this paper, the current state of the 4D treatment planning is reviewed, from theory to the established practical routine. While the fundamental principles of 4D radiotherapy are well defined, the development of a complete, robust and clinically feasible process still remains a challenge, imposed by limitations in the available treatment planning and radiation delivery systems.

摘要

4D CT 成像技术的发展使得创建能够反映呼吸引起的解剖变化的患者模型成为可能,方法是在传统的仅 3D、空间的患者描述中添加时间维度。这为治疗计划和辐射传递开辟了新的途径,旨在为移动目标创建全面的 4D 放射治疗过程。与其他呼吸运动补偿策略(例如屏气和门控技术)不同,4D 放射治疗假设在整个呼吸周期内进行治疗传递——这对患者舒适度和治疗时间效率都有额外的好处。时间相关的位置和体积信息有望为因呼吸而移动的目标提供最佳、高度适形的放射治疗,潜在地提高剂量处方,从而提高治愈率,同时避免涉及附近的结构。本文回顾了 4D 治疗计划的现状,从理论到既定的实践常规。虽然 4D 放射治疗的基本原理已经得到很好的定义,但完整、稳健和临床可行的过程的开发仍然是一个挑战,这是由可用的治疗计划和辐射传递系统的限制造成的。

相似文献

1
Advances in 4D radiation therapy for managing respiration: part II - 4D treatment planning.
Z Med Phys. 2012 Dec;22(4):272-80. doi: 10.1016/j.zemedi.2012.06.011. Epub 2012 Jul 15.
2
Advances in 4D radiation therapy for managing respiration: part I - 4D imaging.
Z Med Phys. 2012 Dec;22(4):258-71. doi: 10.1016/j.zemedi.2012.06.009. Epub 2012 Jul 10.
5
Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking.
Med Phys. 2005 Apr;32(4):942-51. doi: 10.1118/1.1879152.
7
Monte Carlo as a four-dimensional radiotherapy treatment-planning tool to account for respiratory motion.
Phys Med Biol. 2004 Aug 21;49(16):3639-48. doi: 10.1088/0031-9155/49/16/011.
8
Development of a geometry-based respiratory motion-simulating patient model for radiation treatment dosimetry.
J Appl Clin Med Phys. 2008 Jan 21;9(1):2700. doi: 10.1120/jacmp.v9i1.2700.
9
Three-dimensional versus four-dimensional dose calculation for volumetric modulated arc therapy of hypofractionated treatments.
Z Med Phys. 2016 Mar;26(1):45-53. doi: 10.1016/j.zemedi.2015.06.010. Epub 2015 Jul 14.
10
Reconstruction of 4D-CT from a single free-breathing 3D-CT by spatial-temporal image registration.
Inf Process Med Imaging. 2011;22:686-98. doi: 10.1007/978-3-642-22092-0_56.

引用本文的文献

2
Review and recommendations on deformable image registration uncertainties for radiotherapy applications.
Phys Med Biol. 2023 Dec 13;68(24):24TR01. doi: 10.1088/1361-6560/ad0d8a.
3
AAPM Task Group Report 290: Respiratory motion management for particle therapy.
Med Phys. 2022 Apr;49(4):e50-e81. doi: 10.1002/mp.15470. Epub 2022 Jan 31.
4
Respiratory deformation registration in 4D-CT/cone beam CT using deep learning.
Quant Imaging Med Surg. 2021 Feb;11(2):737-748. doi: 10.21037/qims-19-1058.
5
Investigating the use of virtual 4DCT from 4DMRI in gated carbon ion radiation therapy of abdominal tumors.
Z Med Phys. 2022 Feb;32(1):98-108. doi: 10.1016/j.zemedi.2020.08.005. Epub 2020 Oct 14.
8
Online daily adaptive proton therapy.
Br J Radiol. 2020 Mar;93(1107):20190594. doi: 10.1259/bjr.20190594. Epub 2019 Nov 11.

本文引用的文献

1
Optimization of fluoroscopy parameters using pattern matching prediction in the real-time tumor-tracking radiotherapy system.
Phys Med Biol. 2011 Aug 7;56(15):4803-13. doi: 10.1088/0031-9155/56/15/011. Epub 2011 Jul 13.
3
Lung dosimetry in a linac-MRI radiotherapy unit with a longitudinal magnetic field.
Med Phys. 2010 Sep;37(9):4722-32. doi: 10.1118/1.3475942.
4
Relationship between diseased lung tissues on computed tomography and motion of fiducial marker near lung cancer.
Int J Radiat Oncol Biol Phys. 2011 Apr 1;79(5):1408-13. doi: 10.1016/j.ijrobp.2010.01.008. Epub 2010 Jun 3.
5
Incorporating system latency associated with real-time target tracking radiotherapy in the dose prediction step.
Phys Med Biol. 2010 May 7;55(9):2651-68. doi: 10.1088/0031-9155/55/9/015. Epub 2010 Apr 19.
7
Effects of respiration-induced density variations on dose distributions in radiotherapy of lung cancer.
Int J Radiat Oncol Biol Phys. 2009 Jul 15;74(4):1266-75. doi: 10.1016/j.ijrobp.2009.02.073.
8
Real-time prostate trajectory estimation with a single imager in arc radiotherapy: a simulation study.
Phys Med Biol. 2009 Jul 7;54(13):4019-35. doi: 10.1088/0031-9155/54/13/005. Epub 2009 Jun 5.
9
First demonstration of combined kV/MV image-guided real-time dynamic multileaf-collimator target tracking.
Int J Radiat Oncol Biol Phys. 2009 Jul 1;74(3):859-67. doi: 10.1016/j.ijrobp.2009.02.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验