JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA.
J Mol Biol. 2012 Oct 19;423(2):198-216. doi: 10.1016/j.jmb.2012.07.006. Epub 2012 Jul 14.
For RNA to fold into compact, ordered structures, it must overcome electrostatic repulsion between negatively charged phosphate groups by counterion recruitment. A physical understanding of the counterion-assisted folding process requires addressing how cations kinetically and thermodynamically control the folding equilibrium for each tertiary interaction in a full-length RNA. In this work, single-molecule FRET (fluorescence resonance energy transfer) techniques are exploited to isolate and explore the cation-concentration-dependent kinetics for formation of a ubiquitous RNA tertiary interaction, that is, the docking/undocking of a GAAA tetraloop with its 11-nt receptor. Rate constants for docking (k(dock)) and undocking (k(undock)) are obtained as a function of cation concentration, size, and valence, specifically for the series Na(+), K(+), Mg(2+), Ca(2+), Co(NH(3))(6)(3+), and spermidine(3+). Increasing cation concentration acceleratesk(dock)dramatically but achieves only a slight decrease in k(undock). These results can be kinetically modeled using parallel cation-dependent and cation-independent docking pathways, which allows for isolation of the folding kinetics from the interaction energetics of the cations with the undocked and docked states, respectively. This analysis reveals a preferential interaction of the cations with the transition state and docked state as compared to the undocked RNA, with the ion-RNA interaction strength growing with cation valence. However, the corresponding number of cations that are taken up by the RNA upon folding decreases with charge density of the cation. The only exception to these behaviors is spermidine(3+), whose weaker influence on the docking equilibria with respect to Co(NH(3))(6)(3+) can be ascribed to steric effects preventing complete neutralization of the RNA phosphate groups.
为了使 RNA 折叠成紧凑有序的结构,它必须通过抗衡离子募集来克服带负电荷的磷酸基团之间的静电排斥。要从物理上理解抗衡离子辅助折叠过程,就需要解决阳离子如何在动力学和热力学上控制全长 RNA 中每个三级相互作用的折叠平衡。在这项工作中,利用单分子 FRET(荧光共振能量转移)技术来分离和探索普遍存在的 RNA 三级相互作用(即 GAAA 四联体与其 11 个核苷酸受体的对接/脱接)的阳离子浓度依赖性动力学。对接(k(dock)) 和脱接(k(undock)) 的速率常数作为阳离子浓度、大小和价态的函数获得,具体针对 Na(+)、K(+)、Mg(2+)、Ca(2+)、Co(NH(3))(6)(3+)和 spermidine(3+)系列。增加阳离子浓度会显著加速 k(dock),但只会略微降低 k(undock)。这些结果可以使用平行的阳离子依赖和非阳离子依赖的对接途径进行动力学建模,这允许分别从阳离子与未对接和对接状态的相互作用能中分离折叠动力学。这种分析表明,与未对接的 RNA 相比,阳离子与过渡态和对接状态具有优先相互作用,离子-RNA 相互作用强度随阳离子价态的增加而增加。然而,在折叠过程中 RNA 吸收的阳离子数量随阳离子电荷密度的增加而减少。唯一的例外是 spermidine(3+),与 Co(NH(3))(6)(3+)相比,它对对接平衡的影响较弱,这可以归因于空间位阻效应阻止了 RNA 磷酸基团的完全中和。