Department of Physics, The State Key Laboratory on Fiber Optic Local Area Communication Networks and Advanced Optical Communication Systems, Shanghai Jiao Tong University, Shanghai 200240, China.
Nanoscale. 2012 Aug 21;4(16):5148-53. doi: 10.1039/c2nr31268a. Epub 2012 Jul 16.
The relatively low internal surface area of anodized TiO(2) nanotube arrays (TNAs) limits dye adsorption and light capturing in TNA-based dye-sensitized solar cells (DSSCs). Here, water treatment of as-anodized TNAs at room temperature was used to tailor the geometry of TNA walls in a controllable way, leading to a hybrid tube wall structure with the outer shell in a tubular morphology and the inner surface consisting of small particles. To enable front-side illumination in DSSCs, the TNAs with porous inner walls were transferred to transparent conductive oxide substrates by a self-detaching and transfer technique. The roughened water-treated TNAs show significantly enhanced internal surface area, leading to improved dye-loading and light-harvesting capabilities. Optimized performance was achieved after water treatment for 2 days, with a power conversion efficiency of 6.06%, increased by ∼33% compared to conventional TNAs. Furthermore, the hybrid TNA nanostructure provides excellent electron transfer and recombination characteristics, thus promising for high efficiency DSSCs.
阳极氧化 TiO(2) 纳米管阵列(TNA)的相对较低的内表面积限制了基于 TNA 的染料敏化太阳能电池(DSSC)中的染料吸附和光捕获。在这里,室温下对阳极氧化的 TNA 进行水热处理,以可控的方式调整 TNA 壁的几何形状,从而形成具有管状形态的外壳和由小颗粒组成的内表面的混合管壁结构。为了在 DSSC 中实现正面照明,具有多孔内壁的 TNA 通过自分离和转移技术转移到透明导电氧化物衬底上。经过水热处理 2 天后,粗糙的 TNA 显示出显著增强的内表面积,从而提高了染料负载和光捕获能力。经过优化后,水热处理 2 天后的功率转换效率达到 6.06%,与传统 TNA 相比提高了约 33%。此外,混合 TNA 纳米结构提供了优异的电子转移和复合特性,因此有望用于高效率的 DSSC。