Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, China.
Biotechnol Lett. 2012 Nov;34(11):2023-9. doi: 10.1007/s10529-012-1002-8. Epub 2012 Jul 14.
Air-cathode, microbial fuel cells (MFC) with different anode surface areas were evaluated for simultaneous decolorization of Congo Red and bioelectricity production. Doubling the anode area from 18 to 36 cm(2) increased net power by 150 % (0.16-0.4 mW), normalized power (per anode surface area) by 22 % (88-107 mW m(-2)) and Congo Red decolorization by 163 % (1.6-4.2 mg l(-1) h(-1)). Quadrupling the original anode area induced an additional 5 % increase (up to 4.2 mW) in net power and 174 % increase (up to 11.5 mg l(-1) h(-1)) in Congo Red decolorization; however, normalized power decreased by 85 % (down to 58 mW m(-2)). Increased bacterial attachment could account for both the enhanced power and Congo Red decolorization in larger anode MFCs. The limited effect on power output likely arises from cathode limitation or inefficient utilization of anodes.
采用不同阳极表面积的空气阴极微生物燃料电池(MFC)用于同时实现刚果红的脱色和生物电能的产生。将阳极面积从 18 平方厘米增加到 36 平方厘米,可使净功率提高 150%(从 0.16 毫瓦增加到 0.4 毫瓦),归一化功率(单位为阳极表面积)提高 22%(从 88 毫瓦/平方厘米增加到 107 毫瓦/平方厘米),同时刚果红的脱色率提高 163%(从 1.6 毫克/升/小时增加到 4.2 毫克/升/小时)。将原始阳极面积增加三倍可使净功率额外增加 5%(达到 4.2 毫瓦),刚果红的脱色率提高 174%(达到 11.5 毫克/升/小时);然而,归一化功率降低了 85%(降至 58 毫瓦/平方厘米)。在较大阳极 MFC 中,细菌附着的增加可以解释功率和刚果红脱色率的提高。阴极限制或阳极的低效利用可能是对功率输出影响有限的原因。