Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.
J Biol Chem. 2012 Aug 31;287(36):30755-68. doi: 10.1074/jbc.M112.370916. Epub 2012 Jul 13.
Although heme is a crucial element for many biological processes including respiration, heme homeostasis should be regulated strictly due to the cytotoxicity of free heme molecules. Numerous lactic acid bacteria, including Lactococcus lactis, acquire heme molecules exogenously to establish an aerobic respiratory chain. A heme efflux system plays an important role for heme homeostasis to avoid cytotoxicity of acquired free heme, but its regulatory mechanism is not clear. Here, we report that the transcriptional regulator heme-regulated transporter regulator (HrtR) senses and binds a heme molecule as its physiological effector to regulate the expression of the heme-efflux system responsible for heme homeostasis in L. lactis. To elucidate the molecular mechanisms of how HrtR senses a heme molecule and regulates gene expression for the heme efflux system, we determined the crystal structures of the apo-HrtR·DNA complex, apo-HrtR, and holo-HrtR at a resolution of 2.0, 3.1, and 1.9 Å, respectively. These structures revealed that HrtR is a member of the TetR family of transcriptional regulators. The residue pair Arg-46 and Tyr-50 plays a crucial role for specific DNA binding through hydrogen bonding and a CH-π interaction with the DNA bases. HrtR adopts a unique mechanism for its functional regulation upon heme sensing. Heme binding to HrtR causes a coil-to-helix transition of the α4 helix in the heme-sensing domain, which triggers a structural change of HrtR, causing it to dissociate from the target DNA for derepression of the genes encoding the heme efflux system. HrtR uses a unique heme-sensing motif with bis-His (His-72 and His-149) ligation to the heme, which is essential for the coil-to-helix transition of the α4 helix upon heme sensing.
尽管血红素是包括呼吸在内的许多生物过程的关键元素,但由于游离血红素分子的细胞毒性,血红素的动态平衡应该严格调节。许多乳酸菌,包括乳球菌乳球菌,从外源性获取血红素分子以建立有氧呼吸链。血红素外排系统在血红素动态平衡中起着重要作用,以避免获得的游离血红素的细胞毒性,但它的调节机制尚不清楚。在这里,我们报告血红素调节转运蛋白调节剂(HrtR)作为其生理效应物,通过识别和结合血红素分子来调节乳球菌中血红素外排系统的表达,以维持血红素动态平衡。为了阐明 HrtR 如何感知血红素分子并调节血红素外排系统基因表达的分子机制,我们确定了 apo-HrtR·DNA 复合物、apo-HrtR 和 holo-HrtR 的晶体结构,分辨率分别为 2.0、3.1 和 1.9 Å。这些结构表明 HrtR 是 TetR 家族转录调节剂的成员。残基对 Arg-46 和 Tyr-50 通过氢键和 CH-π 与 DNA 碱基相互作用,在特定的 DNA 结合中起着至关重要的作用。HrtR 采用独特的机制来感知血红素进行功能调节。血红素与 HrtR 结合导致血红素感应结构域中α4 螺旋的螺旋到螺旋转变,从而触发 HrtR 的结构变化,使其从靶 DNA 上解离,从而解除对编码血红素外排系统的基因的抑制。HrtR 使用独特的血红素感应基序,双 His(His-72 和 His-149)与血红素配位,这对于血红素感应时α4 螺旋的螺旋到螺旋转变是必不可少的。