CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic RandA Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
Mol Cell Proteomics. 2012 Oct;11(10):1070-83. doi: 10.1074/mcp.M111.012625. Epub 2012 Jul 13.
In eukaryotes, hundreds of protein kinases (PKs) specifically and precisely modify thousands of substrates at specific amino acid residues to faithfully orchestrate numerous biological processes, and reversibly determine the cellular dynamics and plasticity. Although over 100,000 phosphorylation sites (p-sites) have been experimentally identified from phosphoproteomic studies, the regulatory PKs for most of these sites still remain to be characterized. Here, we present a novel software package of iGPS for the prediction of in vivo site-specific kinase-substrate relations mainly from the phosphoproteomic data. By critical evaluations and comparisons, the performance of iGPS is satisfying and better than other existed tools. Based on the prediction results, we modeled protein phosphorylation networks and observed that the eukaryotic phospho-regulation is poorly conserved at the site and substrate levels. With an integrative procedure, we conducted a large-scale phosphorylation analysis of human liver and experimentally identified 9719 p-sites in 2998 proteins. Using iGPS, we predicted a human liver protein phosphorylation networks containing 12,819 potential site-specific kinase-substrate relations among 350 PKs and 962 substrates for 2633 p-sites. Further statistical analysis and comparison revealed that 127 PKs significantly modify more or fewer p-sites in the liver protein phosphorylation networks against the whole human protein phosphorylation network. The largest data set of the human liver phosphoproteome together with computational analyses can be useful for further experimental consideration. This work contributes to the understanding of phosphorylation mechanisms at the systemic level, and provides a powerful methodology for the general analysis of in vivo post-translational modifications regulating sub-proteomes.
在真核生物中,数以百计的蛋白激酶(PKs)特异性地在特定氨基酸残基上修饰数千种底物,以精确地调控众多生物过程,并可逆地决定细胞动态和可塑性。尽管已有超过 100,000 个磷酸化位点(p-sites)通过磷酸蛋白质组学研究被实验鉴定出来,但这些位点的大多数调节性 PK 仍有待鉴定。在这里,我们提出了一种新的 iGPS 软件包,用于主要从磷酸蛋白质组学数据中预测体内特定激酶-底物关系。通过关键评估和比较,iGPS 的性能令人满意,优于其他现有工具。基于预测结果,我们构建了蛋白质磷酸化网络,并观察到真核生物磷酸化调控在位点和底物水平上的保守性较差。通过整合程序,我们对人类肝脏进行了大规模磷酸化分析,并在 2998 种蛋白质中实验鉴定了 9719 个磷酸化位点。使用 iGPS,我们预测了一个包含 350 个 PK 和 962 个底物的人类肝脏蛋白质磷酸化网络,其中有 2633 个 p-sites 具有 12819 个潜在的特定激酶-底物关系。进一步的统计分析和比较表明,127 个 PK 在肝脏蛋白质磷酸化网络中显著修饰了更多或更少的 p-sites,而不是整个人类蛋白质磷酸化网络。这个人类肝脏磷酸蛋白质组的最大数据集和计算分析可以为进一步的实验研究提供参考。这项工作有助于在系统水平上理解磷酸化机制,并为一般分析调节亚蛋白质组的体内翻译后修饰提供了一种强大的方法。