Department of Life Sciences, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
Cell Stress Chaperones. 2013 Jan;18(1):11-23. doi: 10.1007/s12192-012-0351-5. Epub 2012 Jul 18.
In the endoplasmic reticulum (ER), secretory and membrane proteins are properly folded and modified, and the failure of these processes leads to ER stress. At the same time, unfolded protein response (UPR) genes are activated to maintain homeostasis. Despite the thorough characterization of the individual gene regulation of UPR genes to date, further investigation of the mutual regulation among UPR genes is required to understand the complex mechanism underlying the ER stress response. In this study, we aimed to reveal a gene regulatory network formed by UPR genes, including immunoglobulin heavy chain-binding protein (BiP), X-box binding protein 1 (XBP1), C/EBP [CCAAT/enhancer-binding protein]-homologous protein (CHOP), PKR-like endoplasmic reticulum kinase (PERK), inositol-requiring 1 (IRE1), activating transcription factor 6 (ATF6), and ATF4. For this purpose, we focused on promoter-luciferase reporters for BiP, XBP1, and CHOP genes, which bear an ER stress response element (ERSE), and p5 × ATF6-GL3, which bears an unfolded protein response element (UPRE). We demonstrated that the luciferase activities of the BiP and CHOP promoters were upregulated by all the UPR genes, whereas those of the XBP1 promoter and p5 × ATF6-GL3 were upregulated by all the UPR genes except for BiP, CHOP, and ATF4 in HeLa cells. Therefore, an ERSE- and UPRE-centered gene regulatory network of UPR genes could be responsible for the robustness of the ER stress response. Finally, we revealed that BiP protein was degraded when cells were treated with DNA-damaging reagents, such as etoposide and doxorubicin; this finding suggests that the expression level of BiP is tightly regulated at the post-translational level, rather than at the transcriptional level, in the presence of DNA damage.
在内质网(ER)中,分泌蛋白和膜蛋白正确折叠和修饰,这些过程的失败会导致 ER 应激。与此同时,未折叠蛋白反应(UPR)基因被激活以维持内稳态。尽管迄今为止已经对 UPR 基因的单个基因调控进行了彻底的描述,但需要进一步研究 UPR 基因之间的相互调控,以了解 ER 应激反应背后的复杂机制。在这项研究中,我们旨在揭示由 UPR 基因形成的基因调控网络,包括免疫球蛋白重链结合蛋白(BiP)、X 盒结合蛋白 1(XBP1)、C/EBP [CCAAT/增强子结合蛋白]-同源蛋白(CHOP)、PKR 样内质网激酶(PERK)、内质网感应蛋白 1(IRE1)、激活转录因子 6(ATF6)和 ATF4。为此,我们专注于 BiP、XBP1 和 CHOP 基因的启动子-荧光素酶报告基因,这些基因具有内质网应激反应元件(ERSE),以及 p5×ATF6-GL3,它具有未折叠蛋白反应元件(UPRE)。我们证明,BiP 和 CHOP 启动子的荧光素酶活性被所有 UPR 基因上调,而 XBP1 启动子和 p5×ATF6-GL3 的荧光素酶活性被除 BiP、CHOP 和 ATF4 之外的所有 UPR 基因上调在 HeLa 细胞中。因此,一个以 ERSE 和 UPRE 为中心的 UPR 基因调控网络可能负责内质网应激反应的稳健性。最后,我们发现当细胞用 DNA 损伤试剂(如依托泊苷和多柔比星)处理时,BiP 蛋白会降解;这一发现表明,在存在 DNA 损伤的情况下,BiP 蛋白的表达水平在翻译后水平而不是转录水平受到严格调控。