Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia.
Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia; Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
Biochem Pharmacol. 2016 Jun 1;109:27-47. doi: 10.1016/j.bcp.2016.04.001. Epub 2016 Apr 6.
The endoplasmic reticulum (ER) plays a major role in the synthesis, maturation and folding of proteins and is a critical calcium (Ca(2+)) reservoir. Cellular stresses lead to an overwhelming accumulation of misfolded proteins in the ER, leading to ER stress and the activation of the unfolded protein response (UPR). In the stressful tumor microenvironment, the UPR maintains ER homeostasis and enables tumor survival. Thus, a novel strategy for cancer therapeutics is to overcome chronically activated ER stress by triggering pro-apoptotic pathways of the UPR. Considering this, the mechanisms by which the novel anti-cancer agent, Dp44mT, can target the ER stress response pathways were investigated in multiple cell-types. Our results demonstrate that the cytotoxic chelator, Dp44mT, which forms redox-active metal complexes, significantly: (1) increased ER stress-associated pro-apoptotic signaling molecules (i.e., p-eIF2α, ATF4, CHOP); (2) increased IRE1α phosphorylation (p-IRE1α) and XBP1 mRNA splicing; (3) reduced expression of ER stress-associated cell survival signaling molecules (e.g., XBP1s and p58(IPK)); (4) increased cleavage of the transcription factor, ATF6, which enhances expression of its downstream targets (i.e., CHOP and BiP); and (5) increased phosphorylation of CaMKII that induces apoptosis. In contrast to Dp44mT, the iron chelator, DFO, which forms redox-inactive iron complexes, did not affect BiP, p-IRE1α, XBP1 or p58(IPK) levels. This study highlights the ability of a novel cancer therapeutic (i.e., Dp44mT) to target the pro-apoptotic functions of the UPR via cellular metal sequestration and redox stress. Assessment of ER stress-mediated apoptosis is fundamental to the understanding of the pharmacology of chelation for cancer treatment.
内质网 (ER) 在蛋白质的合成、成熟和折叠中发挥着重要作用,是一个关键的钙 (Ca(2+)) 库。细胞应激会导致错误折叠的蛋白质在内质网中大量积累,导致内质网应激和未折叠蛋白反应 (UPR) 的激活。在应激的肿瘤微环境中,UPR 维持内质网的平衡并使肿瘤存活。因此,癌症治疗的一种新策略是通过触发 UPR 的促凋亡途径来克服慢性激活的内质网应激。考虑到这一点,研究了新型抗癌药物 Dp44mT 如何靶向内质网应激反应途径的机制,在多种细胞类型中进行了研究。我们的结果表明,细胞毒性螯合剂 Dp44mT 形成氧化还原活性金属配合物,可显著:(1) 增加与内质网应激相关的促凋亡信号分子(即 p-eIF2α、ATF4、CHOP);(2) 增加 IRE1α 磷酸化 (p-IRE1α) 和 XBP1 mRNA 剪接;(3) 降低与内质网应激相关的细胞存活信号分子(如 XBP1s 和 p58(IPK))的表达;(4) 增加转录因子 ATF6 的切割,从而增强其下游靶标(即 CHOP 和 BiP)的表达;和 (5) 增加诱导细胞凋亡的 CaMKII 磷酸化。与 Dp44mT 相反,形成氧化还原非活性铁配合物的铁螯合剂 DFO 不会影响 BiP、p-IRE1α、XBP1 或 p58(IPK)水平。这项研究强调了新型癌症治疗药物(即 Dp44mT)通过细胞内金属螯合和氧化应激靶向 UPR 的促凋亡功能的能力。评估内质网应激介导的细胞凋亡对于理解螯合疗法治疗癌症的药理学至关重要。