Muthukumarana Saman, Tiwari Ram C
Department of Statistics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
Office of Biostatistics, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA.
Stat Methods Med Res. 2016 Feb;25(1):352-65. doi: 10.1177/0962280212453891. Epub 2012 Jul 16.
This article develops a Bayesian approach for meta-analysis using the Dirichlet process. The key aspect of the Dirichlet process in meta-analysis is the ability to assess evidence of statistical heterogeneity or variation in the underlying effects across study while relaxing the distributional assumptions. We assume that the study effects are generated from a Dirichlet process. Under a Dirichlet process model, the study effects parameters have support on a discrete space and enable borrowing of information across studies while facilitating clustering among studies. We illustrate the proposed method by applying it to a dataset on the Program for International Student Assessment on 30 countries. Results from the data analysis, simulation studies, and the log pseudo-marginal likelihood model selection procedure indicate that the Dirichlet process model performs better than conventional alternative methods.
本文开发了一种使用狄利克雷过程进行元分析的贝叶斯方法。元分析中狄利克雷过程的关键方面在于,它能够在放宽分布假设的同时,评估统计异质性的证据或各研究潜在效应的差异。我们假设研究效应是由狄利克雷过程产生的。在狄利克雷过程模型下,研究效应参数在离散空间上有支撑,能够跨研究借用信息,同时便于研究之间的聚类。我们通过将其应用于30个国家的国际学生评估项目数据集来说明所提出的方法。数据分析、模拟研究以及对数伪边际似然模型选择程序的结果表明,狄利克雷过程模型的表现优于传统的替代方法。