M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
Antimicrob Agents Chemother. 2012 Oct;56(10):5061-9. doi: 10.1128/AAC.01166-12. Epub 2012 Jul 16.
Identifying and understanding the collection of all antibiotic resistance determinants presented in the global microbiota, the antibiotic resistome, provides insight into the evolution of antibiotic resistance and critical information for the development of future antimicrobials. The rifamycins are broad-spectrum antibiotics that target bacterial transcription by inhibition of RNA polymerase. Although mutational alteration of the drug target is the predominant mechanism of resistance to this family of antibiotics in the clinic, a number of diverse inactivation mechanisms have also been reported. In this report, we investigate a subset of environmental rifampin-resistant actinomycete isolates and identify a diverse collection of rifampin inactivation mechanisms. We describe a single isolate, WAC1438, capable of inactivating rifampin by glycosylation. A draft genome sequence of WAC1438 (most closely related to Streptomyces speibonae, according to a 16S rRNA gene comparison) was assembled, and the associated rifampin glycosyltransferase open reading frame, rgt1438, was identified. The role of rgt1438 in rifampin resistance was confirmed by its disruption in the bacterial chromosome, resulting in a loss of antibiotic inactivation and a 4-fold decrease in MIC. Interestingly, examination of the RNA polymerase β-subunit sequence of WAC1438 suggests that it harbors a resistant target and thus possesses dual mechanisms of rifamycin resistance. Using an in vitro assay with purified enzyme, Rgt1438 could inactivate a variety of rifamycin antibiotics with comparable steady-state kinetics constants. Our results identify rgt1438 as a rifampin resistance determinant from WAC1438 capable of inactivating an assortment of rifamycins, adding a new element to the rifampin resistome.
确定和了解全球微生物群中存在的所有抗生素耐药决定因素,即抗生素耐药组,可深入了解抗生素耐药的进化,并为开发未来的抗菌药物提供关键信息。利福霉素是一类广谱抗生素,通过抑制 RNA 聚合酶靶向细菌转录。尽管临床上该类抗生素的耐药机制主要是药物靶标发生突变,但也有报道称存在多种不同的失活机制。在本报告中,我们研究了一组环境中耐 rifampin 的放线菌分离株,并确定了多种不同的 rifampin 失活机制。我们描述了一个能够通过糖基化来失活 rifampin 的单一分离株 WAC1438。根据 16S rRNA 基因比较,WAC1438 的基因组草图(与 Streptomyces speibonae 最为密切相关)被组装,并且鉴定了相关的 rifampin 糖基转移酶开放阅读框 rgt1438。通过在细菌染色体中敲除 rgt1438,证实了 rgt1438 在 rifampin 耐药中的作用,导致抗生素失活和 MIC 降低 4 倍。有趣的是,对 WAC1438 RNA 聚合酶 β 亚基序列的检查表明,它具有耐药靶标,因此具有双重 rifamycin 耐药机制。使用纯化酶的体外测定,Rgt1438 可以以可比的稳态动力学常数失活各种 rifamycin 抗生素。我们的结果确定 rgt1438 是来自 WAC1438 的 rifampin 耐药决定因素,能够失活各种 rifamycins,为 rifampin 耐药组添加了新的元素。