Suppr超能文献

从环境放线菌筛选中鉴定利福平失活糖基转移酶。

Characterization of a rifampin-inactivating glycosyltransferase from a screen of environmental actinomycetes.

机构信息

M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.

出版信息

Antimicrob Agents Chemother. 2012 Oct;56(10):5061-9. doi: 10.1128/AAC.01166-12. Epub 2012 Jul 16.

Abstract

Identifying and understanding the collection of all antibiotic resistance determinants presented in the global microbiota, the antibiotic resistome, provides insight into the evolution of antibiotic resistance and critical information for the development of future antimicrobials. The rifamycins are broad-spectrum antibiotics that target bacterial transcription by inhibition of RNA polymerase. Although mutational alteration of the drug target is the predominant mechanism of resistance to this family of antibiotics in the clinic, a number of diverse inactivation mechanisms have also been reported. In this report, we investigate a subset of environmental rifampin-resistant actinomycete isolates and identify a diverse collection of rifampin inactivation mechanisms. We describe a single isolate, WAC1438, capable of inactivating rifampin by glycosylation. A draft genome sequence of WAC1438 (most closely related to Streptomyces speibonae, according to a 16S rRNA gene comparison) was assembled, and the associated rifampin glycosyltransferase open reading frame, rgt1438, was identified. The role of rgt1438 in rifampin resistance was confirmed by its disruption in the bacterial chromosome, resulting in a loss of antibiotic inactivation and a 4-fold decrease in MIC. Interestingly, examination of the RNA polymerase β-subunit sequence of WAC1438 suggests that it harbors a resistant target and thus possesses dual mechanisms of rifamycin resistance. Using an in vitro assay with purified enzyme, Rgt1438 could inactivate a variety of rifamycin antibiotics with comparable steady-state kinetics constants. Our results identify rgt1438 as a rifampin resistance determinant from WAC1438 capable of inactivating an assortment of rifamycins, adding a new element to the rifampin resistome.

摘要

确定和了解全球微生物群中存在的所有抗生素耐药决定因素,即抗生素耐药组,可深入了解抗生素耐药的进化,并为开发未来的抗菌药物提供关键信息。利福霉素是一类广谱抗生素,通过抑制 RNA 聚合酶靶向细菌转录。尽管临床上该类抗生素的耐药机制主要是药物靶标发生突变,但也有报道称存在多种不同的失活机制。在本报告中,我们研究了一组环境中耐 rifampin 的放线菌分离株,并确定了多种不同的 rifampin 失活机制。我们描述了一个能够通过糖基化来失活 rifampin 的单一分离株 WAC1438。根据 16S rRNA 基因比较,WAC1438 的基因组草图(与 Streptomyces speibonae 最为密切相关)被组装,并且鉴定了相关的 rifampin 糖基转移酶开放阅读框 rgt1438。通过在细菌染色体中敲除 rgt1438,证实了 rgt1438 在 rifampin 耐药中的作用,导致抗生素失活和 MIC 降低 4 倍。有趣的是,对 WAC1438 RNA 聚合酶 β 亚基序列的检查表明,它具有耐药靶标,因此具有双重 rifamycin 耐药机制。使用纯化酶的体外测定,Rgt1438 可以以可比的稳态动力学常数失活各种 rifamycin 抗生素。我们的结果确定 rgt1438 是来自 WAC1438 的 rifampin 耐药决定因素,能够失活各种 rifamycins,为 rifampin 耐药组添加了新的元素。

相似文献

1
Characterization of a rifampin-inactivating glycosyltransferase from a screen of environmental actinomycetes.
Antimicrob Agents Chemother. 2012 Oct;56(10):5061-9. doi: 10.1128/AAC.01166-12. Epub 2012 Jul 16.
2
HelR is a helicase-like protein that protects RNA polymerase from rifamycin antibiotics.
Mol Cell. 2022 Sep 1;82(17):3151-3165.e9. doi: 10.1016/j.molcel.2022.06.019. Epub 2022 Jul 30.
3
A rifamycin inactivating phosphotransferase family shared by environmental and pathogenic bacteria.
Proc Natl Acad Sci U S A. 2014 May 13;111(19):7102-7. doi: 10.1073/pnas.1402358111. Epub 2014 Apr 28.
4
Rox, a Rifamycin Resistance Enzyme with an Unprecedented Mechanism of Action.
Cell Chem Biol. 2018 Apr 19;25(4):403-412.e5. doi: 10.1016/j.chembiol.2018.01.009. Epub 2018 Feb 1.
5
The Enzymes of the Rifamycin Antibiotic Resistome.
Acc Chem Res. 2021 May 4;54(9):2065-2075. doi: 10.1021/acs.accounts.1c00048. Epub 2021 Apr 20.
6
Rifampin and rifaximin resistance in clinical isolates of Clostridium difficile.
Antimicrob Agents Chemother. 2008 Aug;52(8):2813-7. doi: 10.1128/AAC.00342-08. Epub 2008 Jun 16.
7
Inactivation of the lipopeptide antibiotic daptomycin by hydrolytic mechanisms.
Antimicrob Agents Chemother. 2012 Feb;56(2):757-64. doi: 10.1128/AAC.05441-11. Epub 2011 Nov 14.
9
Characterization of a glycosyl transferase inactivating macrolides, encoded by gimA from Streptomyces ambofaciens.
Antimicrob Agents Chemother. 1998 Oct;42(10):2612-9. doi: 10.1128/AAC.42.10.2612.

引用本文的文献

1
Acquired Bacterial Resistance to Antibiotics and Resistance Genes: From Past to Future.
Antibiotics (Basel). 2025 Feb 21;14(3):222. doi: 10.3390/antibiotics14030222.
2
Recent Advances in Antimicrobial Resistance: Insights from as a Model Organism.
Microorganisms. 2024 Dec 31;13(1):51. doi: 10.3390/microorganisms13010051.
3
Characterization of the soil resistome and mobilome in Namib Desert soils.
Int Microbiol. 2024 Aug;27(4):967-975. doi: 10.1007/s10123-023-00454-x. Epub 2023 Nov 16.
4
C25-modified rifamycin derivatives with improved activity against .
PNAS Nexus. 2022 Aug 9;1(4):pgac130. doi: 10.1093/pnasnexus/pgac130. eCollection 2022 Sep.
5
The role of adjuvants in overcoming antibacterial resistance due to enzymatic drug modification.
RSC Med Chem. 2022 Sep 22;13(11):1276-1299. doi: 10.1039/d2md00263a. eCollection 2022 Nov 16.
6
Molecular mechanisms of antibiotic resistance revisited.
Nat Rev Microbiol. 2023 May;21(5):280-295. doi: 10.1038/s41579-022-00820-y. Epub 2022 Nov 21.
8
Antimicrobial Susceptibility of Clinical Oral Isolates of spp.
Microorganisms. 2022 Jan 7;10(1):125. doi: 10.3390/microorganisms10010125.
9
Kanglemycin A Can Overcome Rifamycin Resistance Caused by ADP-Ribosylation by Arr Protein.
Antimicrob Agents Chemother. 2021 Nov 17;65(12):e0086421. doi: 10.1128/AAC.00864-21. Epub 2021 Oct 4.
10
Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission.
Exp Mol Med. 2021 Mar;53(3):301-309. doi: 10.1038/s12276-021-00569-z. Epub 2021 Mar 1.

本文引用的文献

1
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.
Syst Biol. 2012 May;61(3):539-42. doi: 10.1093/sysbio/sys029. Epub 2012 Feb 22.
2
Rifaximin for the treatment of irritable bowel syndrome.
Expert Opin Pharmacother. 2012 Feb;13(3):433-40. doi: 10.1517/14656566.2012.651458. Epub 2012 Jan 18.
3
A small molecule discrimination map of the antibiotic resistance kinome.
Chem Biol. 2011 Dec 23;18(12):1591-601. doi: 10.1016/j.chembiol.2011.10.018.
4
Antibiotic resistance is ancient.
Nature. 2011 Aug 31;477(7365):457-61. doi: 10.1038/nature10388.
5
Rifamycin inhibition of WT and Rif-resistant Mycobacterium tuberculosis and Escherichia coli RNA polymerases in vitro.
Tuberculosis (Edinb). 2011 Sep;91(5):361-9. doi: 10.1016/j.tube.2011.05.002. Epub 2011 Jun 24.
6
Rifamycins--obstacles and opportunities.
Tuberculosis (Edinb). 2010 Mar;90(2):94-118. doi: 10.1016/j.tube.2010.02.001. Epub 2010 Mar 16.
7
Resistance to rifampicin: at the crossroads between ecological, genomic and medical concerns.
Int J Antimicrob Agents. 2010 Jun;35(6):519-23. doi: 10.1016/j.ijantimicag.2009.12.017. Epub 2010 Feb 24.
9
Rifampin combination therapy for nonmycobacterial infections.
Clin Microbiol Rev. 2010 Jan;23(1):14-34. doi: 10.1128/CMR.00034-09.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验