Suppr超能文献

多变量统计分析在神经影像学数据中的应用。

Multivariate statistical analyses for neuroimaging data.

机构信息

Rotman Research Institute, Baycrest, Toronto, Ontario, Canada, M6A 2E1.

出版信息

Annu Rev Psychol. 2013;64:499-525. doi: 10.1146/annurev-psych-113011-143804. Epub 2012 Jul 12.

Abstract

As the focus of neuroscience shifts from studying individual brain regions to entire networks of regions, methods for statistical inference have also become geared toward network analysis. The purpose of the present review is to survey the multivariate statistical techniques that have been used to study neural interactions. We have selected the most common techniques and developed a taxonomy that instructively reflects their assumptions and practical use. For each family of analyses, we describe their application and the types of experimental questions they can address, as well as how they relate to other analyses both conceptually and mathematically. We intend to show that despite their diversity, all of these techniques offer complementary information about the functional architecture of the brain.

摘要

随着神经科学研究的重点从单个脑区转移到整个脑区网络,统计推断方法也逐渐转向网络分析。本综述旨在调查用于研究神经相互作用的多元统计技术。我们选择了最常见的技术,并开发了一个分类法,直观地反映了它们的假设和实际用途。对于每种分析方法,我们描述了它们的应用以及它们可以解决的实验问题类型,以及它们在概念和数学上与其他分析方法的关系。我们旨在表明,尽管这些技术多种多样,但它们都提供了关于大脑功能结构的互补信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验