Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Mol Cell Biochem. 2012 Oct;369(1-2):167-74. doi: 10.1007/s11010-012-1379-7. Epub 2012 Jul 18.
Growing evidence indicates that aberrant upregulation of microRNA-1 (miR-1) occurs in ischemic myocardium. In addition, insulin elicits metabolism-independent cardioprotection against cardiovascular diseases. The aim of this study is to determine whether insulin ameliorates miR-1-induced injury in H9c2 cells under oxidative stress and to investigate the underlying mechanisms. By quantitative real-time RT-PCR (qRT-PCR), we show that miR-1 is upregulated in H9c2 cells after treatment with hydrogen peroxide (H(2)O(2)), and this effect is both dose- and time dependent. Furthermore, expression of miR-1 decreased significantly after insulin treatment (4.5 ± 0.1 vs. 3.0 ± 0.2, p < 0.05). To determine the potential role of miR-1 in cellular injury and gene regulation, adenovirus-mediated overexpression of miR-1 was used. Overexpression of miR-1 decreased cell viability by 28 ± 2 % (n = 6, p < 0.05) and damaged Akt activation with or without H(2)O(2) treatment. To further investigate the effect of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in miR-1-induced injury, H9c2 cells were pretreated with LY294002 (10 μM LY, a specific inhibitor of PI3K) with or without insulin (100 nM) and subjected to H(2)O(2) treatment. LY pretreatment-inhibited Akt activation, lead to increased reactive oxygen species (ROS), and further decreased cell viability induced by miR-1 (n = 6, p < 0.05, n = 9-10 cells/group, p < 0.05 and n = 6, p < 0.05) under oxidative stress. This effect was abolished by insulin. In summary, our findings suggest that miR-1 expression is sensitive to H(2)O(2) stimulation. In addition, insulin decreases miR-1 expression and induces a marked protective effect on miR-1-induced injury under oxidative stress, which may be mediated by the Akt-mediated pathway. These results provide an important, novel clue as to the mechanism of the cardiovascular action of insulin.
越来越多的证据表明,微小 RNA-1(miR-1)在缺血性心肌中异常上调。此外,胰岛素可引发对心血管疾病的代谢独立的心脏保护作用。本研究旨在确定胰岛素是否能改善氧化应激下 H9c2 细胞中 miR-1 诱导的损伤,并探讨其潜在机制。通过实时定量 RT-PCR(qRT-PCR),我们发现过氧化氢(H2O2)处理后 H9c2 细胞中 miR-1 的表达上调,且这种作用呈剂量和时间依赖性。此外,胰岛素处理后 miR-1 的表达显著降低(4.5±0.1 与 3.0±0.2,p<0.05)。为了确定 miR-1 在细胞损伤和基因调控中的潜在作用,我们使用腺病毒介导的 miR-1 过表达。miR-1 的过表达使细胞活力降低了 28±2%(n=6,p<0.05),并且破坏了 Akt 的激活,无论是否存在 H2O2 处理。为了进一步研究磷脂酰肌醇 3-激酶(PI3K)/Akt 通路在 miR-1 诱导损伤中的作用,H9c2 细胞用 LY294002(10μM LY,PI3K 的特异性抑制剂)预处理,然后用 H2O2 处理,或者在 H2O2 处理之前用胰岛素(100 nM)预处理。LY 预处理抑制了 Akt 的激活,导致活性氧(ROS)增加,并进一步降低了 miR-1 诱导的细胞活力(n=6,p<0.05,n=9-10 个细胞/组,p<0.05 和 n=6,p<0.05)在氧化应激下。这种作用被胰岛素所消除。总之,我们的研究结果表明,miR-1 的表达对 H2O2 刺激敏感。此外,胰岛素降低 miR-1 的表达,并在氧化应激下对 miR-1 诱导的损伤产生显著的保护作用,这可能是通过 Akt 介导的通路介导的。这些结果为胰岛素的心血管作用机制提供了一个重要的新线索。