Department of Mathematics, Idaho State University, 921 S. 8th Avenue, Stop 8085, Pocatello, ID 83209-8085, USA.
Stat Med. 2013 Jan 30;32(2):206-19. doi: 10.1002/sim.5474. Epub 2012 Jul 16.
We develop methodological, mathematical, statistical, and computational approaches to constructing schedules of cancer screening that maximize the probability that by the time of primary tumor detection it has not yet metastasized. Solving this problem is based on a comprehensive mechanistic model of cancer progression. We apply the model with realistic parameters and the screening optimization methodology to mammographic screening for breast cancer within the American female population. We uncover some general patterns of optimal screening schedules. We show that optimization of screening regimens leads to a significant reduction in the probability of detecting breast cancer that has already disseminated.
我们开发了方法学、数学、统计学和计算方法,以制定癌症筛查计划,最大限度地提高在检测到原发性肿瘤时尚未发生转移的概率。解决这个问题的基础是一个全面的癌症进展机制模型。我们应用具有现实参数的模型和筛查优化方法,对美国女性人群中的乳腺癌进行乳房 X 光筛查。我们揭示了一些最佳筛查时间表的一般模式。我们表明,筛查方案的优化可显著降低已扩散的乳腺癌的检测概率。