Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA.
Biochemistry. 2012 Aug 14;51(32):6432-40. doi: 10.1021/bi300733d. Epub 2012 Jul 31.
The DNA cytosine deaminase APOBEC3G (A3G) is capable of blocking retrovirus replication by editing viral cDNA and impairing reverse transcription. However, the biophysical details of this host-pathogen interaction are unclear. We applied atomic force microscopy (AFM) and hybrid DNA substrates to investigate properties of A3G bound to single-stranded DNA (ssDNA). Hybrid DNA substrates included ssDNA with 5' or 3' ends attached to DNA duplexes (tail-DNA) and gap-DNA substrates, in which ssDNA is flanked by two double-stranded fragments. We found that A3G binds with similar efficiency to the 5' and 3' substrates, suggesting that ssDNA polarity is not an important factor. Additionally, we observed that A3G binds the single-stranded region of the gap-DNA substrates with the same efficiency as tail-DNA. These results demonstrate that single-stranded DNA ends are not needed for A3G binding. The protein stoichiometry does not depend on the ssDNA substrate type, but the ssDNA length modulates the stoichiometry of A3G in the complex. We applied single-molecule high-speed AFM to directly visualize the dynamics of A3G in the complexes. We were able to visualize A3G sliding and protein association-dissociation events. During sliding, A3G translocated over a 69-nucleotide ssDNA segment in <1 s. Association-dissociation events were more complex, as dimeric A3G could dissociate from the template as a whole or undergo a two-step process with monomers capable of sequential dissociation. We conclude that A3G monomers, dimers, and higher-order oligomers can bind ssDNA substrates in a manner independent of strand polarity and availability of free ssDNA ends.
DNA 胞嘧啶脱氨酶 APOBEC3G(A3G)能够通过编辑病毒 cDNA 和损害逆转录来阻断逆转录病毒的复制。然而,这种宿主-病原体相互作用的生物物理细节尚不清楚。我们应用原子力显微镜(AFM)和杂交 DNA 底物来研究 A3G 与单链 DNA(ssDNA)结合的特性。杂交 DNA 底物包括 ssDNA 的 5' 或 3' 末端与 DNA 双链体(尾 DNA)和缺口 DNA 底物连接的 ssDNA,其中 ssDNA 被两条双链片段包围。我们发现 A3G 与 5' 和 3' 底物结合的效率相似,这表明 ssDNA 的极性不是一个重要因素。此外,我们观察到 A3G 与缺口 DNA 底物的单链区域结合的效率与尾 DNA 相同。这些结果表明,A3G 结合不需要单链 DNA 末端。蛋白质的化学计量不依赖于 ssDNA 底物的类型,但 ssDNA 的长度调节了复合物中 A3G 的化学计量。我们应用单分子高速 AFM 直接可视化 A3G 在复合物中的动力学。我们能够可视化 A3G 的滑动和蛋白质的缔合-解离事件。在滑动过程中,A3G 在 <1 s 内迁移了 69 个核苷酸的 ssDNA 片段。缔合-解离事件更为复杂,因为二聚体 A3G 可以作为一个整体从模板上解离,或者通过单体能够连续解离的两步过程解离。我们得出结论,A3G 单体、二聚体和更高阶的寡聚体可以以不依赖于链极性和游离 ssDNA 末端可用性的方式结合 ssDNA 底物。