Cicek A Ercument, Ozsoyoglu Gultekin
Department of Electrical Engineering and Computer Science, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
J Bioinform Comput Biol. 2012 Feb;10(1):1240004. doi: 10.1142/S0219720012400045.
Steady state metabolic network dynamics analysis (SMDA) is a recently proposed computational metabolomics tool that (i) captures a metabolic network and its rules via a metabolic network database, (ii) mimics the reasoning of a biochemist, given a set of metabolic observations, and (iii) locates efficiently all possible metabolic activation/inactivation (flux) alternatives. However, a number of factors may cause the SMDA algorithm to eliminate feasible flux scenarios. These factors include (i) inherent error margins in observations (measurements), (ii) lack of knowledge to classify measurements as normal versus abnormal, and (iii) choosing a highly constrained metabolic subnetwork to query against. In this work, we first present and formalize these obstacles. Then, we propose techniques to eliminate them and present an experimental evaluation of our proposed techniques.
稳态代谢网络动力学分析(SMDA)是一种最近提出的计算代谢组学工具,它(i)通过代谢网络数据库捕获代谢网络及其规则,(ii)在给定一组代谢观测值的情况下模拟生物化学家的推理,以及(iii)有效地定位所有可能的代谢激活/失活(通量)替代方案。然而,许多因素可能导致SMDA算法排除可行的通量情景。这些因素包括(i)观测(测量)中的固有误差范围,(ii)缺乏将测量分类为正常与异常的知识,以及(iii)选择高度受限的代谢子网进行查询。在这项工作中,我们首先提出并形式化这些障碍。然后,我们提出消除它们的技术,并对我们提出的技术进行实验评估。