Gerstl Matthias P, Ruckerbauer David E, Mattanovich Diethard, Jungreuthmayer Christian, Zanghellini Jürgen
1] Austrian Centre of Industrial Biotechnology, Vienna, Austria, EU [2] Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria, EU.
Sci Rep. 2015 Mar 10;5:8930. doi: 10.1038/srep08930.
Elementary flux modes (EFMs) are non-decomposable steady-state pathways in metabolic networks. They characterize phenotypes, quantify robustness or identify engineering targets. An EFM analysis (EFMA) is currently restricted to medium-scale models, as the number of EFMs explodes with the network's size. However, many topologically feasible EFMs are biologically irrelevant. We present thermodynamic EFMA (tEFMA), which calculates only the small(er) subset of thermodynamically feasible EFMs. We integrate network embedded thermodynamics into EFMA and show that we can use the metabolome to identify and remove thermodynamically infeasible EFMs during an EFMA without losing biologically relevant EFMs. Calculating only the thermodynamically feasible EFMs strongly reduces memory consumption and program runtime, allowing the analysis of larger networks. We apply tEFMA to study the central carbon metabolism of E. coli and find that up to 80% of its EFMs are thermodynamically infeasible. Moreover, we identify glutamate dehydrogenase as a bottleneck, when E. coli is grown on glucose and explain its inactivity as a consequence of network embedded thermodynamics. We implemented tEFMA as a Java package which is available for download at https://github.com/mpgerstl/tEFMA.
基本通量模式(EFMs)是代谢网络中不可分解的稳态途径。它们表征表型、量化稳健性或识别工程靶点。目前,基本通量模式分析(EFMA)仅限于中等规模的模型,因为基本通量模式的数量会随着网络规模的增大而激增。然而,许多拓扑结构可行的基本通量模式在生物学上并不相关。我们提出了热力学基本通量模式分析(tEFMA),它只计算热力学可行的基本通量模式的较小子集。我们将网络嵌入式热力学集成到基本通量模式分析中,并表明我们可以利用代谢组在基本通量模式分析过程中识别和去除热力学不可行的基本通量模式,而不会丢失生物学相关的基本通量模式。仅计算热力学可行的基本通量模式可大幅减少内存消耗和程序运行时间,从而能够分析更大的网络。我们应用热力学基本通量模式分析来研究大肠杆菌的中心碳代谢,发现其高达80%的基本通量模式在热力学上是不可行的。此外,我们确定了在大肠杆菌以葡萄糖为培养基生长时,谷氨酸脱氢酶是一个瓶颈,并解释了其不活动是网络嵌入式热力学的结果。我们将热力学基本通量模式分析实现为一个Java包,可在https://github.com/mpgerstl/tEFMA上下载。