Suppr超能文献

用于组织学图像分析的采样策略比较

A comparison of sampling strategies for histological image analysis.

作者信息

Homeyer André, Schenk Andrea, Dahmen Uta, Dirsch Olaf, Huang Hai, Hahn Horst K

机构信息

Fraunhofer MEVIS, Universitätsallee 29, 28359 Bremen, Germany.

出版信息

J Pathol Inform. 2011;2:S11. doi: 10.4103/2153-3539.92034. Epub 2012 Jan 19.

Abstract

Histological image analysis methods often employ machine-learning classifiers in order to adapt to the huge variability of histological images. To train these classifiers, the user must select samples of the relevant image objects. In the field of active learning, there has been much research on sampling strategies that exploit the uncertainty of the current classification in order to guide the user to maximally informative samples. Although these approaches have the potential to reduce the training effort and increase the classification accuracy, they are very rarely employed in practice. In this paper, we investigate the practical value of uncertainty sampling in the context of histological image analysis. To obtain practically meaningful results, we have devised an evaluation algorithm that simulates the way a human interacts with a user interface. The results show that uncertainty sampling outperforms common random or error sampling strategies by achieving more accurate classification results with a lower number of training images.

摘要

组织学图像分析方法通常采用机器学习分类器,以适应组织学图像的巨大变异性。为了训练这些分类器,用户必须选择相关图像对象的样本。在主动学习领域,已经有很多关于采样策略的研究,这些策略利用当前分类的不确定性来指导用户选择信息量最大的样本。尽管这些方法有可能减少训练工作量并提高分类准确率,但在实践中却很少被采用。在本文中,我们研究了不确定性采样在组织学图像分析中的实际价值。为了获得具有实际意义的结果,我们设计了一种评估算法,该算法模拟人类与用户界面交互的方式。结果表明,不确定性采样通过使用更少的训练图像获得更准确的分类结果,优于常见的随机或错误采样策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2b2/3312717/2eea42dadb79/JPI-2-11-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验