Department of Medicine, MetroHealth System, Case Western Reserve University, Cleveland, OH, USA.
BMC Nephrol. 2012 Jul 19;13:61. doi: 10.1186/1471-2369-13-61.
The genetic architecture responsible for chronic kidney disease (CKD) remains incompletely described. The Oligosyndactyly (Os) mouse models focal and segmental glomerulosclerosis (FSGS), which is associated with reduced nephron number caused by the Os mutation. The Os mutation leads to FSGS in multiple strains including the ROP-Os/+. However, on the C57Bl/6J background the mutation does not cause FSGS, although nephron number in these mice are equivalent to those in ROP-Os/+ mice. We exploited this phenotypic variation to identify genes that potentially contribute to glomerulosclerosis.
To identify such novel genes, which regulate susceptibility or resistance to renal disease progression, we generated and compared the renal transcriptomes using serial analysis of gene expression (SAGE) from the sclerosis-prone ROP-Os/+ and sclerosis resistant C57-Os/+ mouse kidneys. We confirmed the validity of the differential gene expression using multiple approaches. We also used an Ingenuity Pathway Analysis engine to assemble differentially regulated molecular networks. Cell culture techniques were employed to confirm functional relevance of selected genes.
A comparative analysis of the kidney transcriptomes revealed multiple genes, with expression levels that were statistically different. These novel, candidate, renal disease susceptibility/resistance genes included neuropilin2 (Nrp2), glutathione-S-transferase theta (Gstt1) and itchy (Itch). Of 34 genes with the most robust statistical difference in expression levels between ROP-Os/+ and C57-Os/+ mice, 13 and 3 transcripts localized to glomerular and tubulointerstitial compartments, respectively, from micro-dissected human FSGS biopsies. Network analysis of all significantly differentially expressed genes identified 13 connectivity networks. The most highly scored network highlighted the roles for oxidative stress and mitochondrial dysfunction pathways. Functional analyses of these networks provided evidence for activation of transforming growth factor beta (TGFβ) signaling in ROP-Os/+ kidneys despite similar expression of the TGFβ ligand between the tested strains.
These data demonstrate the complex dysregulation of normal cellular functions in this animal model of FSGS and suggest that therapies directed at multiple levels will be needed to effectively treat human kidney diseases.
导致慢性肾病(CKD)的遗传结构仍不完全描述。寡指(Os)模型鼠具有局灶节段性肾小球硬化症(FSGS),这与 Os 突变导致的肾单位数量减少有关。Os 突变导致包括 ROP-Os/+在内的多种品系发生 FSGS。然而,在 C57Bl/6J 背景下,该突变不会导致 FSGS,尽管这些小鼠的肾单位数量与 ROP-Os/+小鼠相当。我们利用这种表型差异来鉴定可能导致肾小球硬化的基因。
为了鉴定潜在调节肾脏疾病进展易感性或抗性的新基因,我们使用基因表达系列分析(SAGE)从易发生硬化的 ROP-Os/+和硬化抗性 C57-Os/+鼠肾脏中生成和比较了肾脏转录组。我们使用多种方法证实了差异基因表达的有效性。我们还使用了 Ingenuity 通路分析引擎来组装差异调节的分子网络。细胞培养技术用于证实选定基因的功能相关性。
对肾脏转录组的比较分析显示了多个表达水平有统计学差异的基因。这些新的候选肾脏疾病易感性/抗性基因包括神经钙黏蛋白 2(Nrp2)、谷胱甘肽 S-转移酶 theta(Gstt1)和瘙痒(Itch)。在 ROP-Os/+和 C57-Os/+小鼠之间表达水平差异最显著的 34 个基因中,13 个和 3 个转录本分别定位于从小鼠 FSGS 活检的肾小球和肾小管间质中分离的微区。对所有差异表达基因进行网络分析,确定了 13 个连通网络。得分最高的网络突出了氧化应激和线粒体功能障碍途径的作用。这些网络的功能分析提供了证据,证明尽管在测试的品系中 TGFβ配体的表达相似,但在 ROP-Os/+肾脏中 TGFβ 信号转导被激活。
这些数据表明,在这种 FSGS 动物模型中,正常细胞功能发生了复杂的失调,并表明需要针对多个水平的治疗方法才能有效治疗人类肾脏疾病。