Suppr超能文献

钙离子依赖性离子通道是昆虫生物钟神经元自发性活动的基础。

Ca²⁺-dependent ion channels underlying spontaneous activity in insect circadian pacemaker neurons.

机构信息

FB 10, Biology, Animal Physiology, University of Kassel, Heinrich Plett Str. 40, 34132 Kassel, Germany.

出版信息

Eur J Neurosci. 2012 Oct;36(8):3021-9. doi: 10.1111/j.1460-9568.2012.08227.x. Epub 2012 Jul 22.

Abstract

Electrical activity in the gamma frequency range is instrumental for temporal encoding on the millisecond scale in attentive vertebrate brains. Surprisingly, also circadian pacemaker neurons in the cockroach Rhyparobia maderae (Leucophaea maderae) employ fast spontaneous rhythmic activity in the gamma band frequency range (20-70  Hz) together with slow rhythmic activity. The ionic conductances controlling this fast spontaneous activity are still unknown. Here, Ca(2+) imaging combined with pharmacology was employed to analyse ion channels underlying spontaneous activity in dispersed circadian pacemakers of the adult accessory medulla, which controls circadian locomotor activity rhythms. Fast spontaneous Ca(2+) transients in circadian pacemakers accompany tetrodotoxin (TTX)-blockable spontaneous action potentials. In contrast to vertebrate pacemakers, the spontaneous depolarisations from rest appear to be rarely initiated via TTX-sensitive sustained Na(+) channels. Instead, they are predominantly driven by mibefradil-sensitive, low-voltage-activated Ca(2+) channels and DK-AH269-sensitive hyperpolarisation-activated, cyclic nucleotide-gated cation channels. Rhythmic depolarisations activate voltage-gated Na(+) channels and nifedipine-sensitive high-voltage-activated Ca(2+) channels. Together with Ca(2+) rises, the depolarisations open repolarising small-conductance but not large-conductance Ca(2+) -dependent K(+) channels. In contrast, we hypothesise that P/Q-type Ca(2+) channels coupled to large-conductance Ca(2+) -dependent K(+) channels are involved in input-dependent activity.

摘要

在脊椎动物大脑中,伽马频率范围内的电活动是毫秒级时间编码的关键。令人惊讶的是,蟑螂 Rhparobia maderae(Leucophaea maderae)的生物钟起搏神经元也采用伽马频段(20-70Hz)的快速自发节律性活动与缓慢的节律性活动相结合。控制这种快速自发活动的离子电导仍然未知。在这里,钙成像与药理学相结合,用于分析控制昼夜节律性运动活动节律的成年附属髓质离散生物钟起搏神经元中自发活动的离子通道。生物钟起搏神经元中的快速自发钙瞬变伴随着四氢生物蝶呤(TTX)可阻断的自发动作电位。与脊椎动物起搏神经元不同,从静息状态开始的自发去极化似乎很少通过 TTX 敏感的持续钠(Na+)通道引发。相反,它们主要由米贝地尔敏感的低电压激活钙(Ca2+)通道和 DK-AH269 敏感的超极化激活、环核苷酸门控阳离子通道驱动。节律性去极化激活电压门控 Na+通道和硝苯地平敏感的高电压激活 Ca2+通道。随着钙上升,去极化会打开再极化小电导但不打开大电导 Ca2+依赖性 K+通道。相比之下,我们假设 P/Q 型 Ca2+通道与大电导 Ca2+依赖性 K+通道偶联,参与输入依赖性活动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验