ICP-MS Facility, Chemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
Sci Total Environ. 2012 Sep 1;433:371-8. doi: 10.1016/j.scitotenv.2012.05.098. Epub 2012 Jul 20.
Surface water originating from the Copahue volcano crater-lake was analysed for total arsenic and four arsenic species: arsenite (iAs(III)), arsenate (iAs(V)), monomethylarsonic acid (MA(V)) and dimethylarsinic acid (DMA(V)) and other trace elements (Fe, Mn, V, Cr, Ni, Zn). A novel in-field technique for the preconcentration and separation of four arsenic species was, for the first time, used for the analysis of geothermal and volcanic waters. Total arsenic levels along the río Agrio ranged from <0.2-3783 μg/l As(T). The highest arsenic levels were recorded in the el Vertedero spring (3783 μg/l As(T)) on the flank of the Copahue volcano, which feeds the acidic río Agrio. Arsenite (H(3)AsO(3)) predominated along the upper río Agrio (78.9-81.2% iAs(III)) but the species distribution changed at lago Caviahue and arsenate (H(2)AsO(4)(-)) became the main species (51.4-61.4% iAs(V)) up until Salto del Agrio. The change in arsenic species is potentially a result of an increase in redox potential and the formation of iron-based precipitates. Arsenic speciation showed a statistically significant correlation with redox potential (r=0.9697, P=0.01). Both total arsenic and arsenic speciation displayed a statistically significant correlation with vanadium levels along the river (r=0.9961, P=0.01 and r=0.8488, P=0.05, respectively). This study highlights that chemical speciation analysis of volcanic waters is important in providing ideas on potential chemical toxicity. Furthermore there is a need for further work evaluating how arsenic (and other trace elements), released in volcanic and geothermal streams/vents, impacts on both biota and humans (via exposure in thermal pools or consuming commercial drinking water).
亚砷酸盐(iAs(III))、砷酸盐(iAs(V))、一甲基砷酸(MA(V))和二甲基砷酸(DMA(V))以及其他微量元素(Fe、Mn、V、Cr、Ni、Zn)。首次使用一种新的现场技术对地热和火山水进行了四种砷形态的预浓缩和分离分析。沿阿格里奥河的总砷含量范围为 <0.2-3783μg/l As(T)。在科帕瓦火山的侧翼埃尔韦尔迪耶托泉(El Vertedero spring)记录到的砷含量最高(3783μg/l As(T)),该泉为酸性的阿格里奥河提供了水源。在阿格里奥河上游(78.9-81.2% iAs(III)),亚砷酸盐(H(3)AsO(3))占主导地位,但在拉戈卡维亚乌和萨尔特德尔阿格里奥,砷形态分布发生了变化,砷酸盐(H(2)AsO(4)(-))成为主要形态(51.4-61.4% iAs(V))。砷形态的变化可能是由于氧化还原电位的增加和基于铁的沉淀物的形成。砷形态分析与氧化还原电位呈显著的统计学相关性(r=0.9697,P=0.01)。总砷和砷形态分析均与河流中钒水平呈显著的统计学相关性(r=0.9961,P=0.01 和 r=0.8488,P=0.05)。本研究强调,对火山水的化学形态分析对于了解潜在的化学毒性具有重要意义。此外,还需要进一步研究评估在火山和地热溪流/喷口释放的砷(和其他微量元素)如何影响生物群和人类(通过在温泉中暴露或饮用商业饮用水)。