School of Aerospace and Mechanical Engineering and Bioengineering Center, University of Oklahoma, 865 Asp Avenue, Room 200, Norman, OK 73019, USA.
Ann Biomed Eng. 2013 Jan;41(1):205-14. doi: 10.1007/s10439-012-0624-2. Epub 2012 Jul 21.
The human tympanic membrane (TM) transfers sound in the ear canal into the mechanical vibration of the ossicles in the middle ear. The dynamic properties of TM directly affect the middle ear transfer function. The static or quasi-static mechanical properties of TM were reported in the literature, but the dynamic properties of TM over the auditory frequency range are very limited. In this paper, a new method was developed to measure the dynamic properties of human TM using the Dynamic-Mechanical Analyzer (DMA). The test was conducted at the frequency range of 1-40 Hz at three different temperatures: 5, 25, and 37 °C. The frequency-temperature superposition was applied to extend the testing frequency range to a much higher level (at least 3800 Hz). The generalized linear solid model was employed to describe the constitutive relation of the TM. The storage modulus E' and the loss modulus E″ were obtained from 11 specimens. The mean storage modulus was 15.1 MPa at 1 Hz and 27.6 MPa at 3800 Hz. The mean loss modulus was 0.28 MPa at 1 Hz and 4.1 MPa at 3800 Hz. The results show that the frequency-temperature superposition is a feasible approach to study the dynamic properties of the ear soft tissues. The dynamic properties of human TM obtained in this study provide a better description of the damping behavior of ear tissues. The properties can be transferred into the finite element model of the human ear to replace the Rayleigh type damping. The data reported here contribute to the biomechanics of the middle ear and improve the accuracy of the FE model for the human ear.
人类鼓膜(TM)将耳道中的声音转换为中耳听小骨的机械振动。TM 的动态特性直接影响中耳传递函数。文献中报道了 TM 的静态或准静态机械特性,但 TM 在听觉频率范围内的动态特性非常有限。在本文中,开发了一种使用动态机械分析仪(DMA)测量人 TM 动态特性的新方法。测试在 5、25 和 37°C 三个不同温度下进行,频率范围为 1-40 Hz。应用频率-温度叠加将测试频率范围扩展到更高水平(至少 3800 Hz)。广义线性固体模型用于描述 TM 的本构关系。从 11 个样本中获得存储模量 E'和损耗模量 E″。在 1 Hz 时的平均存储模量为 15.1 MPa,在 3800 Hz 时的平均存储模量为 27.6 MPa。在 1 Hz 时的平均损耗模量为 0.28 MPa,在 3800 Hz 时的平均损耗模量为 4.1 MPa。结果表明,频率-温度叠加是研究耳软组织动态特性的一种可行方法。本研究中获得的人 TM 动态特性提供了对耳组织阻尼行为的更好描述。这些特性可以转换为人类耳朵的有限元模型,以取代瑞利型阻尼。这里报告的数据有助于中耳生物力学,并提高了人类耳朵的 FE 模型的准确性。