Suppr超能文献

基于频率-温度迭加原理的人鼓膜动态特性

Dynamic properties of human tympanic membrane based on frequency-temperature superposition.

机构信息

School of Aerospace and Mechanical Engineering and Bioengineering Center, University of Oklahoma, 865 Asp Avenue, Room 200, Norman, OK 73019, USA.

出版信息

Ann Biomed Eng. 2013 Jan;41(1):205-14. doi: 10.1007/s10439-012-0624-2. Epub 2012 Jul 21.

Abstract

The human tympanic membrane (TM) transfers sound in the ear canal into the mechanical vibration of the ossicles in the middle ear. The dynamic properties of TM directly affect the middle ear transfer function. The static or quasi-static mechanical properties of TM were reported in the literature, but the dynamic properties of TM over the auditory frequency range are very limited. In this paper, a new method was developed to measure the dynamic properties of human TM using the Dynamic-Mechanical Analyzer (DMA). The test was conducted at the frequency range of 1-40 Hz at three different temperatures: 5, 25, and 37 °C. The frequency-temperature superposition was applied to extend the testing frequency range to a much higher level (at least 3800 Hz). The generalized linear solid model was employed to describe the constitutive relation of the TM. The storage modulus E' and the loss modulus E″ were obtained from 11 specimens. The mean storage modulus was 15.1 MPa at 1 Hz and 27.6 MPa at 3800 Hz. The mean loss modulus was 0.28 MPa at 1 Hz and 4.1 MPa at 3800 Hz. The results show that the frequency-temperature superposition is a feasible approach to study the dynamic properties of the ear soft tissues. The dynamic properties of human TM obtained in this study provide a better description of the damping behavior of ear tissues. The properties can be transferred into the finite element model of the human ear to replace the Rayleigh type damping. The data reported here contribute to the biomechanics of the middle ear and improve the accuracy of the FE model for the human ear.

摘要

人类鼓膜(TM)将耳道中的声音转换为中耳听小骨的机械振动。TM 的动态特性直接影响中耳传递函数。文献中报道了 TM 的静态或准静态机械特性,但 TM 在听觉频率范围内的动态特性非常有限。在本文中,开发了一种使用动态机械分析仪(DMA)测量人 TM 动态特性的新方法。测试在 5、25 和 37°C 三个不同温度下进行,频率范围为 1-40 Hz。应用频率-温度叠加将测试频率范围扩展到更高水平(至少 3800 Hz)。广义线性固体模型用于描述 TM 的本构关系。从 11 个样本中获得存储模量 E'和损耗模量 E″。在 1 Hz 时的平均存储模量为 15.1 MPa,在 3800 Hz 时的平均存储模量为 27.6 MPa。在 1 Hz 时的平均损耗模量为 0.28 MPa,在 3800 Hz 时的平均损耗模量为 4.1 MPa。结果表明,频率-温度叠加是研究耳软组织动态特性的一种可行方法。本研究中获得的人 TM 动态特性提供了对耳组织阻尼行为的更好描述。这些特性可以转换为人类耳朵的有限元模型,以取代瑞利型阻尼。这里报告的数据有助于中耳生物力学,并提高了人类耳朵的 FE 模型的准确性。

相似文献

1
Dynamic properties of human tympanic membrane based on frequency-temperature superposition.
Ann Biomed Eng. 2013 Jan;41(1):205-14. doi: 10.1007/s10439-012-0624-2. Epub 2012 Jul 21.
3
Dynamic Properties of Human Tympanic Membrane After Exposure to Blast Waves.
Ann Biomed Eng. 2017 Oct;45(10):2383-2394. doi: 10.1007/s10439-017-1870-0. Epub 2017 Jun 20.
4
Viscoelastic properties of human tympanic membrane.
Ann Biomed Eng. 2007 Feb;35(2):305-14. doi: 10.1007/s10439-006-9227-0. Epub 2006 Dec 8.
5
Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements.
Hear Res. 2012 Aug;290(1-2):45-54. doi: 10.1016/j.heares.2012.05.001. Epub 2012 May 11.
6
Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts.
Hear Res. 2016 Oct;340:191-203. doi: 10.1016/j.heares.2016.03.005. Epub 2016 Mar 16.
7
Dynamic properties of human incudostapedial joint-Experimental measurement and finite element modeling.
Med Eng Phys. 2018 Apr;54:14-21. doi: 10.1016/j.medengphy.2018.02.006. Epub 2018 Feb 22.
8
Static versus dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus.
Biomech Model Mechanobiol. 2012 Jul;11(6):829-40. doi: 10.1007/s10237-011-0355-6. Epub 2011 Oct 29.
9
Dynamic Properties of Tympanic Membrane in a Chinchilla Otitis Media Model Measured With Acoustic Loading.
J Biomech Eng. 2015 Aug;137(8):081006. doi: 10.1115/1.4030410. Epub 2015 Jun 9.
10
A single-ossicle ear: Acoustic response and mechanical properties measured in duck.
Hear Res. 2016 Oct;340:35-42. doi: 10.1016/j.heares.2015.12.020. Epub 2015 Dec 23.

引用本文的文献

1
The Transmission of Sound to the Cochlea in Normal and Pathological Human Middle Ears.
J Assoc Res Otolaryngol. 2025 Jun 5. doi: 10.1007/s10162-025-00997-y.
2
Coupled Finite Element Model of the Middle and Inner Ear as Virtual Test Environment for Stapes Surgery.
Int J Numer Method Biomed Eng. 2025 Feb;41(2):e70013. doi: 10.1002/cnm.70013.
3
Mammalian middle ear mechanics: A review.
Front Bioeng Biotechnol. 2022 Oct 10;10:983510. doi: 10.3389/fbioe.2022.983510. eCollection 2022.
4
Mouse middle-ear forward and reverse acoustics.
J Acoust Soc Am. 2021 Apr;149(4):2711. doi: 10.1121/10.0004218.
5
Dynamic Properties of Microresonators with the Bionic Structure of Tympanic Membrane.
Sensors (Basel). 2020 Dec 5;20(23):6958. doi: 10.3390/s20236958.
6
Mechanical Properties of Baboon Tympanic Membrane from Young to Adult.
J Assoc Res Otolaryngol. 2020 Oct;21(5):395-407. doi: 10.1007/s10162-020-00765-0. Epub 2020 Aug 11.
8
Dynamic property changes in stapedial annular ligament associated with acute otitis media in the chinchilla.
Med Eng Phys. 2017 Feb;40:65-74. doi: 10.1016/j.medengphy.2016.12.003. Epub 2016 Dec 15.
9
Finite-Element Modelling of the Acoustic Input Admittance of the Newborn Ear Canal and Middle Ear.
J Assoc Res Otolaryngol. 2017 Feb;18(1):25-48. doi: 10.1007/s10162-016-0587-3. Epub 2016 Oct 7.
10
Characterization of the nonlinear elastic behavior of chinchilla tympanic membrane using micro-fringe projection.
Hear Res. 2016 Sep;339:1-11. doi: 10.1016/j.heares.2016.05.012. Epub 2016 May 27.

本文引用的文献

1
Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements.
Hear Res. 2012 Aug;290(1-2):45-54. doi: 10.1016/j.heares.2012.05.001. Epub 2012 May 11.
2
Viscoelastic properties of gerbil tympanic membrane at very low frequencies.
J Biomech. 2012 Apr 5;45(6):919-24. doi: 10.1016/j.jbiomech.2012.01.023. Epub 2012 Feb 10.
3
Static versus dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus.
Biomech Model Mechanobiol. 2012 Jul;11(6):829-40. doi: 10.1007/s10237-011-0355-6. Epub 2011 Oct 29.
4
A comprehensive model of human ear for analysis of implantable hearing devices.
IEEE Trans Biomed Eng. 2011 Oct;58(10):3024-7. doi: 10.1109/TBME.2011.2159714. Epub 2011 Jun 23.
5
Finite element analysis of the middle ear transfer functions and related pathologies.
Med Eng Phys. 2009 Oct;31(8):907-16. doi: 10.1016/j.medengphy.2009.06.009. Epub 2009 Jul 29.
6
Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation.
J Mech Behav Biomed Mater. 2009 Jan;2(1):82-92. doi: 10.1016/j.jmbbm.2008.05.008. Epub 2008 Jun 12.
7
Measurement of young's modulus of human tympanic membrane at high strain rates.
J Biomech Eng. 2009 Jun;131(6):064501. doi: 10.1115/1.3118770.
10
Modeling of sound transmission from ear canal to cochlea.
Ann Biomed Eng. 2007 Dec;35(12):2180-95. doi: 10.1007/s10439-007-9366-y. Epub 2007 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验