Suppr超能文献

在三维有限元模型中,不同鼓膜材料特性对人中耳声音传导的影响。

The effects of varying tympanic-membrane material properties on human middle-ear sound transmission in a three-dimensional finite-element model.

作者信息

O'Connor Kevin N, Cai Hongxue, Puria Sunil

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA.

Department of Otology and Laryngology, Harvard Medical School, Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, Massachusetts 02114, USA.

出版信息

J Acoust Soc Am. 2017 Nov;142(5):2836. doi: 10.1121/1.5008741.

Abstract

An anatomically based three-dimensional finite-element human middle-ear (ME) model is used to test the sensitivity of ME sound transmission to tympanic-membrane (TM) material properties. The baseline properties produce responses comparable to published measurements of ear-canal input impedance and power reflectance, stapes velocity normalized by ear-canal pressure (P), and middle-ear pressure gain (MEG), i.e., cochlear-vestibule pressure (P) normalized by P. The mass, Young's modulus (E), and shear modulus (G) of the TM are varied, independently and in combination, over a wide range of values, with soft and bony TM-annulus boundary conditions. MEG is recomputed and plotted for each case, along with summaries of the magnitude and group-delay deviations from the baseline over low (below 0.75 kHz), mid (0.75-5 kHz), and high (above 5 kHz) frequencies. The MEG magnitude varies inversely with increasing TM mass at high frequencies. Increasing E boosts high frequencies and attenuates low and mid frequencies, especially with a bony TM annulus and when G varies in proportion to E, as for an isotropic material. Increasing G on its own attenuates low and mid frequencies and boosts high frequencies. The sensitivity of MEG to TM material properties has implications for model development and the interpretation of experimental observations.

摘要

基于解剖学的三维有限元人类中耳(ME)模型用于测试中耳声音传输对鼓膜(TM)材料特性的敏感性。基线特性产生的响应与已发表的耳道输入阻抗和功率反射率、经耳道压力(P)归一化的镫骨速度以及中耳压力增益(MEG)的测量结果相当,即经P归一化的蜗前庭压力(P)。在软质和骨质TM-环边界条件下,独立地以及组合地在很宽的值范围内改变TM的质量、杨氏模量(E)和剪切模量(G)。针对每种情况重新计算并绘制MEG,同时给出低频(低于0.75kHz)、中频(0.75 - 5kHz)和高频(高于5kHz)范围内相对于基线的幅度和群延迟偏差的汇总。在高频时,MEG幅度随TM质量增加呈反比变化。增加E会提升高频并衰减低频和中频,特别是在骨质TM环的情况下以及当G与E成比例变化时(如同各向同性材料)。单独增加G会衰减低频和中频并提升高频。MEG对TM材料特性的敏感性对模型开发和实验观察结果的解释具有重要意义。

相似文献

6
Effects of tympanic membrane perforation on middle ear transmission in gerbil.鼓膜穿孔对沙鼠中耳传音的影响。
Hear Res. 2019 Mar 1;373:48-58. doi: 10.1016/j.heares.2018.12.005. Epub 2018 Dec 15.
10
3D finite element model of the chinchilla ear for characterizing middle ear functions.用于表征中耳功能的灰鼠耳三维有限元模型。
Biomech Model Mechanobiol. 2016 Oct;15(5):1263-77. doi: 10.1007/s10237-016-0758-5. Epub 2016 Jan 19.

引用本文的文献

3
Experimental Study of Needle Insertion into Gerbil Tympanic Membrane.沙鼠鼓膜针刺实验研究。
J Assoc Res Otolaryngol. 2024 Oct;25(5):427-450. doi: 10.1007/s10162-024-00953-2. Epub 2024 Jul 11.
5
Mechanical Effects of Medical Device Attachment to Human Tympanic Membrane.医疗器械附于人类鼓膜的机械效应。
J Assoc Res Otolaryngol. 2024 Jun;25(3):285-302. doi: 10.1007/s10162-024-00942-5. Epub 2024 Apr 1.
9
Mammalian middle ear mechanics: A review.哺乳动物中耳力学:综述
Front Bioeng Biotechnol. 2022 Oct 10;10:983510. doi: 10.3389/fbioe.2022.983510. eCollection 2022.
10
The Effects of Middle-ear Stiffness on the Auditory Brainstem Neural Encoding of Phase.中耳劲度对相位听觉脑干神经编码的影响。
J Assoc Res Otolaryngol. 2022 Dec;23(6):859-873. doi: 10.1007/s10162-022-00872-0. Epub 2022 Oct 10.

本文引用的文献

6
Mechanisms of hearing loss after blast injury to the ear.爆震性耳损伤后听力损失的机制。
PLoS One. 2013 Jul 1;8(7):e67618. doi: 10.1371/journal.pone.0067618. Print 2013.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验