O'Connor Kevin N, Cai Hongxue, Puria Sunil
Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA.
Department of Otology and Laryngology, Harvard Medical School, Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, Massachusetts 02114, USA.
J Acoust Soc Am. 2017 Nov;142(5):2836. doi: 10.1121/1.5008741.
An anatomically based three-dimensional finite-element human middle-ear (ME) model is used to test the sensitivity of ME sound transmission to tympanic-membrane (TM) material properties. The baseline properties produce responses comparable to published measurements of ear-canal input impedance and power reflectance, stapes velocity normalized by ear-canal pressure (P), and middle-ear pressure gain (MEG), i.e., cochlear-vestibule pressure (P) normalized by P. The mass, Young's modulus (E), and shear modulus (G) of the TM are varied, independently and in combination, over a wide range of values, with soft and bony TM-annulus boundary conditions. MEG is recomputed and plotted for each case, along with summaries of the magnitude and group-delay deviations from the baseline over low (below 0.75 kHz), mid (0.75-5 kHz), and high (above 5 kHz) frequencies. The MEG magnitude varies inversely with increasing TM mass at high frequencies. Increasing E boosts high frequencies and attenuates low and mid frequencies, especially with a bony TM annulus and when G varies in proportion to E, as for an isotropic material. Increasing G on its own attenuates low and mid frequencies and boosts high frequencies. The sensitivity of MEG to TM material properties has implications for model development and the interpretation of experimental observations.
基于解剖学的三维有限元人类中耳(ME)模型用于测试中耳声音传输对鼓膜(TM)材料特性的敏感性。基线特性产生的响应与已发表的耳道输入阻抗和功率反射率、经耳道压力(P)归一化的镫骨速度以及中耳压力增益(MEG)的测量结果相当,即经P归一化的蜗前庭压力(P)。在软质和骨质TM-环边界条件下,独立地以及组合地在很宽的值范围内改变TM的质量、杨氏模量(E)和剪切模量(G)。针对每种情况重新计算并绘制MEG,同时给出低频(低于0.75kHz)、中频(0.75 - 5kHz)和高频(高于5kHz)范围内相对于基线的幅度和群延迟偏差的汇总。在高频时,MEG幅度随TM质量增加呈反比变化。增加E会提升高频并衰减低频和中频,特别是在骨质TM环的情况下以及当G与E成比例变化时(如同各向同性材料)。单独增加G会衰减低频和中频并提升高频。MEG对TM材料特性的敏感性对模型开发和实验观察结果的解释具有重要意义。