Department of Life Sciences, National Central University, Jung-li 32001, Taiwan, Republic of China.
Nucleic Acids Res. 2012 Oct;40(18):9171-81. doi: 10.1093/nar/gks689. Epub 2012 Jul 20.
Aminoacylation of transfer RNA(Gln) (tRNA(Gln)) is performed by distinct mechanisms in different kingdoms and represents the most diverged route of aminoacyl-tRNA synthesis found in nature. In Saccharomyces cerevisiae, cytosolic Gln-tRNA(Gln) is generated by direct glutaminylation of tRNA(Gln) by glutaminyl-tRNA synthetase (GlnRS), whereas mitochondrial Gln-tRNA(Gln) is formed by an indirect pathway involving charging by a non-discriminating glutamyl-tRNA synthetase and the subsequent transamidation by a specific Glu-tRNA(Gln) amidotransferase. Previous studies showed that fusion of a yeast non-specific tRNA-binding cofactor, Arc1p, to Escherichia coli GlnRS enables the bacterial enzyme to substitute for its yeast homologue in vivo. We report herein that the same fusion enzyme, upon being imported into mitochondria, substituted the indirect pathway for Gln-tRNA(Gln) synthesis as well, despite significant differences in the identity determinants of E. coli and yeast cytosolic and mitochondrial tRNA(Gln) isoacceptors. Fusion of Arc1p to the bacterial enzyme significantly enhanced its aminoacylation activity towards yeast tRNA(Gln) isoacceptors in vitro. Our study provides a mechanism by which trans-kingdom rescue of distinct pathways of Gln-tRNA(Gln) synthesis can be conferred by a single enzyme.
氨酰化转移 RNA(Gln)(tRNA(Gln)) 在不同的生物界中通过不同的机制进行,代表了自然界中发现的最具差异的氨酰-tRNA 合成途径。在酿酒酵母中,细胞质 Gln-tRNA(Gln) 是由谷氨酰-tRNA 合成酶(GlnRS)直接对 tRNA(Gln) 进行谷氨酰化生成的,而线粒体 Gln-tRNA(Gln) 则是通过一种间接途径形成的,涉及非特异性的谷氨酰-tRNA 合成酶的加载,以及随后由特异性的 Glu-tRNA(Gln) 酰胺转移酶进行的转酰胺作用。先前的研究表明,将酵母非特异性 tRNA 结合辅助因子 Arc1p 融合到大肠杆菌 GlnRS 中,可使细菌酶在体内替代其酵母同源物。我们在此报告,即使大肠杆菌和酵母细胞质和线粒体 tRNA(Gln) 同功受体的身份决定因素存在显著差异,该融合酶在被导入线粒体后,也能替代间接途径进行 Gln-tRNA(Gln) 的合成。Arc1p 与细菌酶的融合显著增强了该酶在体外对酵母 tRNA(Gln) 同功受体的氨酰化活性。我们的研究提供了一种机制,通过该机制,单个酶可以赋予不同途径的 Gln-tRNA(Gln) 合成的跨生物界拯救。