Suppr超能文献

将 CHARMM 通用力场扩展到含磺酰基的化合物及其在生物分子模拟中的应用。

Extension of the CHARMM General Force Field to sulfonyl-containing compounds and its utility in biomolecular simulations.

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA.

出版信息

J Comput Chem. 2012 Dec 5;33(31):2451-68. doi: 10.1002/jcc.23067. Epub 2012 Jul 23.

Abstract

Presented is an extension of the CHARMM General Force Field (CGenFF) to enable the modeling of sulfonyl-containing compounds. Model compounds containing chemical moieties such as sulfone, sulfonamide, sulfonate, and sulfamate were used as the basis for the parameter optimization. Targeting high-level quantum mechanical and experimental crystal data, the new parameters were optimized in a hierarchical fashion designed to maintain compatibility with the remainder of the CHARMM additive force field. The optimized parameters satisfactorily reproduced equilibrium geometries, vibrational frequencies, interactions with water, gas phase dipole moments, and dihedral potential energy scans. Validation involved both crystalline and liquid phase calculations showing the newly developed parameters to satisfactorily reproduce experimental unit cell geometries, crystal intramolecular geometries, and pure solvent densities. The force field was subsequently applied to study conformational preference of a sulfonamide based peptide system. Good agreement with experimental IR/NMR data further validated the newly developed CGenFF parameters as a tool to investigate the dynamic behavior of sulfonyl groups in a biological environment. CGenFF now covers sulfonyl group containing moieties allowing for modeling and simulation of sulfonyl-containing compounds in the context of biomolecular systems including compounds of medicinal interest.

摘要

本文介绍了 CHARMM 通用力场(CGenFF)的扩展,以实现含磺酰基化合物的建模。模型化合物中包含了诸如砜、磺酰胺、磺酸盐和氨基磺酸盐等化学基团,作为参数优化的基础。针对高水平的量子力学和实验晶体数据,采用分层优化方式设计新参数,以保持与 CHARMM 附加力场其余部分的兼容性。优化后的参数令人满意地再现了平衡几何形状、振动频率、与水的相互作用、气相偶极矩和二面角势能扫描。验证涉及晶体和液相计算,表明新开发的参数能够令人满意地再现实验单元晶体几何形状、晶体分子内几何形状和纯溶剂密度。该力场随后被应用于研究基于磺酰胺的肽系统的构象偏好。与实验红外/核磁共振数据的良好一致性进一步验证了新开发的 CGenFF 参数可作为研究生物环境中磺酰基动态行为的工具。CGenFF 现在涵盖了含磺酰基的基团,从而可以在包括药物相关化合物在内的生物分子系统中对含磺酰基的化合物进行建模和模拟。

相似文献

1
Extension of the CHARMM General Force Field to sulfonyl-containing compounds and its utility in biomolecular simulations.
J Comput Chem. 2012 Dec 5;33(31):2451-68. doi: 10.1002/jcc.23067. Epub 2012 Jul 23.
2
CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses.
J Phys Chem B. 2010 Oct 14;114(40):12981-94. doi: 10.1021/jp105758h.
3
CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses.
J Chem Theory Comput. 2009 Aug 20;5(9):2353-2370. doi: 10.1021/ct900242e.
4
CHARMM Drude Polarizable Force Field for Aldopentofuranoses and Methyl-aldopentofuranosides.
J Phys Chem B. 2015 Jun 25;119(25):7846-59. doi: 10.1021/acs.jpcb.5b01767. Epub 2015 Jun 9.
5
Development of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model.
J Phys Chem B. 2011 Jan 27;115(3):580-96. doi: 10.1021/jp1092338. Epub 2010 Dec 17.
8
CHARMM Additive All-Atom Force Field for Acyclic Polyalcohols, Acyclic Carbohydrates and Inositol.
J Chem Theory Comput. 2009 Apr 27;5(5):1315-1327. doi: 10.1021/ct9000608.
9
Improved Modeling of Halogenated Ligand-Protein Interactions Using the Drude Polarizable and CHARMM Additive Empirical Force Fields.
J Chem Inf Model. 2019 Jan 28;59(1):215-228. doi: 10.1021/acs.jcim.8b00616. Epub 2018 Nov 27.
10
Additive empirical force field for hexopyranose monosaccharides.
J Comput Chem. 2008 Nov 30;29(15):2543-64. doi: 10.1002/jcc.21004.

引用本文的文献

3
Polysialosides Outperform Sulfated Analogs for Binding with SARS-CoV-2.
Small. 2025 Aug;21(34):e2500719. doi: 10.1002/smll.202500719. Epub 2025 Jul 16.
5
Computational loop reconstruction based design of efficient PET hydrolases.
Commun Biol. 2025 Jun 17;8(1):934. doi: 10.1038/s42003-025-08364-6.
7
Core Flipping in Lead Optimization: Rank Ordering Using λ-Dynamics.
J Chem Inf Model. 2025 Jul 14;65(13):6835-6846. doi: 10.1021/acs.jcim.5c00320. Epub 2025 Jun 16.
8
Multiple intramolecular triggers converge to preferential G protein coupling in the CBR.
Nat Commun. 2025 Jun 11;16(1):5265. doi: 10.1038/s41467-025-60003-0.
9
Molecular Modeling and Evaluation of Thioureas and Arylthioureas as Urease Inhibitors.
ACS Omega. 2025 May 22;10(21):21795-21812. doi: 10.1021/acsomega.5c01648. eCollection 2025 Jun 3.

本文引用的文献

1
Sulfonate-containing thiiranes as selective gelatinase inhibitors.
ACS Med Chem Lett. 2010 Dec 13;2(2):177-81. doi: 10.1021/ml100254e. eCollection 2011 Feb 10.
2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
Recent Developments and Applications of the CHARMM force fields.
Wiley Interdiscip Rev Comput Mol Sci. 2012 Jan;2(1):167-185. doi: 10.1002/wcms.74. Epub 2011 Jun 28.
5
Inhibition of tobacco bacterial wilt with sulfone derivatives containing an 1,3,4-oxadiazole moiety.
J Agric Food Chem. 2012 Feb 1;60(4):1036-41. doi: 10.1021/jf203772d. Epub 2012 Jan 19.
7
Design, synthesis, and validation of a β-turn mimetic library targeting protein-protein and peptide-receptor interactions.
J Am Chem Soc. 2011 Jul 6;133(26):10184-94. doi: 10.1021/ja201878v. Epub 2011 Jun 15.
9
Synthesis of sulfonamide-bridged glycomimetics.
J Org Chem. 2011 May 6;76(9):2965-75. doi: 10.1021/jo2001269. Epub 2011 Mar 29.
10
Ionic liquid-induced unprecedented size enhancement of aggregates within aqueous sodium dodecylbenzene sulfonate.
Langmuir. 2010 Dec 7;26(23):17821-6. doi: 10.1021/la103689m. Epub 2010 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验